收敛半径

时间:2024-12-11 06:19:04编辑:笔记君

收敛半径怎么求?公式是什么?

级数收敛半径怎么求,公式是什么?如图拓展资料:根据达朗贝尔审敛法,收敛半径R满足:如果幂级数满足,则:ρ是正实数时,1/ρ;ρ = 0时,+∞;ρ =+∞时,R= 0。1.根据达朗贝尔审敛法,收敛半径R满足:如果幂级数满足,则: ρ是正实数时,1/ρ。 ρ = 0时,+∞。ρ =+∞时,R= 0。2.根据根值审敛法,则有柯西-阿达马公式,或者,复分析中的收敛半径,将一个收敛半径是正数的幂级数的变量取为复数,就可以定义一个全纯函数。收敛半径可以被如下定理刻画:个中心为 a的幂级数 f的收敛半径 R等于 a与离 a最近的使得函数不能用幂级数方式定义的点的距离,到 a的距离严格小于 R的所有点组成的集合称为收敛圆盘,最近点的取法是在整个复平面中,而不仅仅是在实轴上,即使中心和系数都是实数时也是如此.参考资料:百度百科-收敛半径

收敛半径的三种求法

收敛半径的三种求法如下:根据达朗贝尔审敛法,收敛半径R满足:如果幂级数满足,则:ρ是正实数时,1/ρ。ρ = 0时,+∞。ρ =+∞时,R= 0。根据根值审敛法,则有柯西-阿达马公式:或者。复分析中的收敛半径将一个收敛半径是正数的幂级数的变量取为复数,就可以定义一个全纯函数。 收敛半径可以被如下定理刻画:一个中心为 a的幂级数 f的收敛半径 R等于 a与离 a最近的使得函数不能用幂级数方式定义的点的距离。到 a的距离严格小于 R的所有点组成的集合称为收敛圆盘。最近点的取法是在整个复平面中,而不仅仅是在实轴上,即使中心和系数都是实数时也是如此。例如:函数没有复根。它在零处的泰勒展开为:运用达朗贝尔审敛法可以得到它的收敛半径为1。与此相应的,函数 f(z) 在 ±i 存在奇点,其与原点0的距离是1。收敛半径定义:敛半径r是一个非负的实数或无穷大,使得在 | z -a| r时幂级数发散。具体来说,当 z和 a足够接近时,幂级数就会收敛,反之则可能发散。收敛半径就是收敛区和发散区域的分界线。在 |z- a| = r的收敛圆上,幂级数的敛散性是不确定的:对某些 z可能收敛,对其它的则发散。如果幂级数对所有复数 z都收敛,那么说收敛半径是无穷大。

求这个的收敛半径。 求解过程🙏🏻🙏🏻🙏🏻

解答:
1、是奇函数,则f(x)=-f(-x)
f(-x)=[-2^(-x)+a]/[2^(-x+1)+b〕
则 [-2^(-x)+a]/[2^(-x+1)+b〕=-(-2^x+a)/[2^(x+1)+b],
化简,得b-2a=0,ab-2=0,得a=1,b=2或a=-1,b=-2

2、
1)、当a=1,b=2时,f(x)=(-2^x+1)/[2^(x+1)+2]
可令m=2^x,则f(m)=(1-m)/〔2(1+m)〕,m∈(0,+∞)
f(m)的值域为(-1/2,1/2)
而f(c)=c^2-3c+3=(c-3/2)^2+3/4
f(c)min=3/4>f(m)max
所以D∈R,时f(x)<c^2-3c+3恒成立

2)、当a=-1,b=-2时,f(x)=(-2^x-1)/[2^(x+1)-2]
可令m=2^x,则f(m)=(1+m)/〔2(1-m)〕,m∈(0,1)U(1,+∞)
m∈(0,1),f(m)的值域为(0,+∞),且为单调增函数
m∈(1,+∞),f(m)的值域为(-∞,0),也是单调增函数
要满足f(x)<c^2-3c+3成立,
x∈(0,+∞)恒成立的


请问收敛半径等于什么?

元旦快乐!Happy New Year !1、本题中的等于号应该删去;2、本题是典型的幂级数(Power series),解答收敛半径的方法有两种: A、比值法; B、根值法。3、收敛半径是从英文Convergent Radius翻译而来,它本身是一个 牵强附会的概念,不涉及平面区域问题,无半径可言。它的准确 意思是:收敛区间长度的一半。4、两种解法的具体过程如下:

上一篇:如何学好口语

下一篇:没有了