给定

时间:2024-12-08 04:43:28编辑:笔记君

怎么判断矩阵是不是正交矩阵?

AAT的转置=E(E为单位矩阵,AT表示“矩阵A的转置矩阵”。)或ATA=E,则n阶实矩阵A称为正交矩阵。可以直接计算A与A转置的乘积,如果算出来是单位阵,则A是正交阵。更方便地做法是利用正交的等价条件:各列为相互正交的单位向量。所以第一个不是正交阵(列向量不是单位向量),第二个是正交阵。扩展资料:如果:AAT=E(E为单位矩阵,AT表示“矩阵A的转置矩阵”。)或ATA=E,则n阶实矩阵A称为正交矩阵,若A为正交阵,则满足以下条件 :1、AT是正交矩阵2、(E为单位矩阵)3、AT的各行是单位向量且两两正交4、AT的各列是单位向量且两两正交5、(Ax,Ay)=(x,y)x,y∈R6、|A|=1或-17、正交矩阵通常用字母Q表示。参考资料来源:百度百科-正交矩阵

两个矩阵是否正交的判断方法是什么?

将两向量做内积,得出结果为0则两特征向量正交。例子:设向量m=(x1,x2,x3),n=(y1,y2,y3)那么m*n=x1y1+x2y2+x3y3如果m*n=0,那么称m和n正交。矩阵的特征向量是矩阵理论上的重要概念之一,它有着广泛的应用。数学上,线性变换的特征向量(本征向量)是一个非简并的向量,其方向在该变换下不变。该向量在此变换下缩放的比例称为其特征值(本征值)。扩展资料:求特征值描述正方形矩阵的特征值的重要工具是特征多项式,λ是A的特征值等价于线性方程组(A – λI) v = 0 (其中I是单位矩阵)有非零解v (一个特征向量),因此等价于行列式|A – λI|=0 [1] 。函数p(λ) = det(A – λI)是λ的多项式,因为行列式定义为一些乘积的和,这就是A的特征多项式。矩阵的特征值也就是其特征多项式的零点。一个矩阵A的特征值可以通过求解方程pA(λ) = 0来得到。 若A是一个n×n矩阵,则pA为n次多项式,因而A最多有n个特征值。 反过来,代数基本定理说这个方程刚好有n个根,如果重根也计算在内的话。所有奇数次的多项式必有一个实数根,因此对于奇数n,每个实矩阵至少有一个实特征值。在实矩阵的情形,对于偶数或奇数的n,非实数特征值成共轭对出现。求特征向量一旦找到两两互不相同的特征值λ,相应的特征向量可以通过求解方程(A – λI) v = 0 得到,其中v为待求特征向量,I为单位阵。当特征值出现重根时,如λ1=λ2,此时,特征向量v1的求解方法为(A-λ1I)v1=0,v2为(A-λ2I)v2=v1,依次递推。没有实特征值的一个矩阵的例子是顺时针旋转90度。数值计算在实践中,大型矩阵的特征值无法通过特征多项式计算,计算该多项式本身相当费资源,而精确的“符号式”的根对于高次的多项式来说很难计算和表达:阿贝尔-鲁费尼定理显示高次(5次或更高)多项式的根无法用n次方根来简单表达。对于估算多项式的根的有效算法是有的,但特征值的小误差可以导致特征向量的巨大误差。求特征多项式的零点,即特征值的一般算法,是迭代法。最简单的方法是幂法:取一个随机向量v,然后计算一系列单位向量。这个序列几乎总是收敛于绝对值最大的特征值所对应的特征向量。这个算法很简单,但是本身不是很有用。但是,象QR算法这样的算法正是以此为基础的。参考资料:百度百科-特征向量

上一篇:帅气男生头像 霸气

下一篇:没有了