伪随机

时间:2024-12-04 09:28:39编辑:笔记君

伪随机数怎么找规律?

真正意义上的随机数(或者随机事件)在某次产生过程中是按照实验过程中表现的分布概率随机产生的,其结果是不可预测的,是不可见的。而计算机中的随机函数是按照一定算法模拟产生的,其结果是确定的,是可见的。我们可以这样认为这个可预见的结果其出现的概率是100%。所以用计算机随机函数所产生的“随机数”并不随机,是伪随机数。一般地,伪随机数的生成方法主要有以下3种:(1) 直接法(Direct Method),根据分布函数的物理意义生成。缺点是仅适用于某些具有特殊分布的随机数,如二项式分布、泊松分布。(2) 逆转法(Inversion Method),假设U服从[0,1]区间上的均匀分布,令X=F-1(U),则X的累计分布函数(CDF)为F。该方法原理简单、编程方便、适用性广。(3)接受拒绝法(Acceptance-Rejection Method):假设希望生成的随机数的概率密度函数(PDF)为f,则首先找到一个PDF为g的随机数发生器与常数c,使得f(x)≤cg(x),然后根据接收拒绝算法求解。由于算法平均运算c次才能得到一个希望生成的随机数,因此c的取值必须尽可能小。显然,该算法的缺点是较难确定g与c。因此,伪随机数生成器(PRNG)一般采用逆转法,其基础是均匀分布,均匀分布PRNG的优劣决定了整个随机数体系的优劣。下文研究均匀分布的PRNG。伪随机数发生器

伪随机数的介绍

伪随机数是用确定性的算法计算出来自[0.1]均匀分布的随机数序列。并不真正的随机,但具有类似于随机数的统计特征,如均匀性、独立性等。在计算伪随机数时,若使用的初值不变,那么伪随机数的数序也不变。伪随机数可以用计算机大量生成,在模拟研究中为了提高模拟效率,一般采用伪随机数代替真正的随机数。模拟中使用的一般是循环周期极长并能通过随机数检验的伪随机数,以保证计算结果的随机性。伪随机数生成方法1、直接法,根据分布函数的物理意义生成。缺点是仅适用于某些具有特殊分布的随机数,如二项式分布、泊松分布。2、逆转法,假设U服从[0.1]区间上的均匀分布,令X=F-1(U),则X的累计分布函数(CDF)为F。该方法原理简单、编程方便、适用性广。3、接受拒绝法,假设希望生成的随机数的概率密度函数为f,则首先找到一个PDF为g的随机数发生器与常数c,使得f(x)≤cg(x),然后根据接收拒绝算法求解。由于算法平均运算c次才能得到一个希望生成的随机数,因此c的取值必须尽可能小。显然,该算法的缺点是较难确定g与c。因此,伪随机数生成器一般采用逆转法,其基础是均匀分布,均匀分布PRNG的优劣决定了整个随机数体系的优劣。

上一篇:火灾探测器

下一篇:没有了