线性微分方程

时间:2024-11-29 00:02:34编辑:笔记君

什么是线性微分方程?

线性微分方程是指关于未知函数及其各阶导数都是一次方,否则称其为非线性微分方程。如果一个微分方程中仅含有未知函数及其各阶导数作为整体的一次幂,则称它为线性微分方程。可以理解为此微分方程中的未知函数y是不超过一次的,且此方程中y的各阶导数也应该是不超过一次的。 微分方程数学描述许多物理或是化学的基本定律都可以写成微分方程的形式。在生物学及经济学中,微分方程用来作为复杂系统的数学模型。微分方程的数学理论最早是和方程对应的科学领域一起出现,而微分方程的解就可以用在该领域中。不过有时二个截然不同的科学领域会形成相同的微分方程,此时微分方程对应的数学理论可以看到不同现象后面一致的原则。

判断微分方程是否线性?

大致有三个条件:①未知函数及其各阶导数都是一次幂。②未知函数及各阶导数的系数只能含有自变量或常数 这在后面一阶线性微分方程中也涉及到了。dy/dx=-p(x)y十Q(x),其中p(x)就是未知函数含自变量的系数。③不能出现未知函数及各阶导数的复合函数形式。如sinxdx=cosydy,出现了cosy,为复合函数,所以不是线性微分方程。微分方程是数学方程,用来描述某一类函数与其导数之间的关系,在初等数学的代数方程里,其解是常数值。微分方程可分为常微分方程及偏微分方程。它在化学、工程学、经济学和人口统计等领域应用广泛。线性及非线性:常微分方程及偏微分方程都可以分为线性及非线性二类。若微分方程中没有出现自变数及微分项的平方或其他乘积项,也没有出现应变数及其微分项的乘积,此微分方程为线性微分方程,否则即为非线性微分方程。齐次线性微分方程是线性微分方程中更细的分类,微分方程的解乘上一系数或是与另一个解相加后的结果仍为微分方程的解。若线性微分方程的系数均为常数,则为常系数线性微分方程。常系数线性微分方程可以利用拉氏转换转换为代数方程,因此简化求解的过程。针对非线性的微分方程,只有相当少数的方法可以求得微分方程的解析解,而且这些方法需要微分方程有特别的对称性。长时间时非线性微分方程可能会出现非常复杂的特性,也可能会有混沌现象。

上一篇:林丹身高

下一篇:没有了