导数的定义

时间:2024-11-26 07:14:08编辑:笔记君

导数的定义是什么?如何计算?

=d(dy)/dx*dx=d²y/dx²dy是微元,书上的定义dy=f'(x)dx,因此dy/dx就是f'(x),即y的一阶导数。dy/dx也就是y对x求导,得到的一阶导数,可以把它看做一个新的函数。d(dy/dx)/dx,就是这个新的函数对x求导,也即y的一阶导数对x求导,得到的就是二阶导数。扩展资料:如果函数y=f(x)在开区间内每一点都可导,就称函数f(x)在区间内可导。这时函数y=f(x)对于区间内的每一个确定的x值,都对应着一个确定的导数值,这就构成一个新的函数,称这个函数为原来函数y=f(x)的导函数,记作y'、f'(x)、dy/dx或df(x)/dx,简称导数。参考资料来源:百度百科-导数

导数的定义

定义:导数(Derivative),也叫导函数值。又名微商,是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。几何意义:函数y=f(x)在x0点的导数f'(x0)的几何意义:表示函数曲线在点P0(x0,f(x0))处的切线的斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。扩展资料:导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。参考资料:百度百科——导数

导数定义式是什么?

导数定义式,就是由导数的定义中,用于求导数的最原始的公式:f'(x0)=lim(x->x0)[(f(x)-f(x0))/(x-x0)]。设函数y=f(x)在点x0的某邻域内有定义,若极限lim(x->x0)[(f(x)-f(x0))/(x-x0)]存在,则称函数f在点x0处可导,并称该极限为函数f在点x0处的导数,记作f'(x0)。若该极限不存在,则称f在点x0处不可导。导数设函数y=f(x)在点x0的某个邻域内有定义,当自变量x在x0处有增量Δx,(x0+Δx)也在该邻域内时,相应地函数取得增量Δy=f(x0+Δx)-f(x0);如果Δy与Δx之比当Δx→0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限为函数y=f(x)在点x0处的导数。如果函数y=f(x)在开区间内每一点都可导,就称函数f(x)在区间内可导。这时函数y=f(x)对于区间内的每一个确定的x值,都对应着一个确定的导数值,这就构成一个新的函数,称这个函数为原来函数y=f(x)的导函数,记作y'、f'(x)、dy/dx或df(x)/dx,简称导数。以上内容参考:百度百科——导数

导数的定义_导数的定义式

  导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。以下是我分享给大家的关于导数的定义以及导数的定义式,希望能给大家带来帮助!


  导数的定义:
  如果函数f(x)在(a,b)中每一点处都可导,则称f(x)在(a,b)上可导,则可建立f(x)的导函数,简称导数,记为f'(x)

  如果f(x)在(a,b)内可导,且在区间端点a处的右导数和端点b处的左导数都存在,则称f(x)在闭区间[a,b]上可导,f'(x)为区间[a,b]上的导函数,简称导数。
  导数的定义式:
  1、应用

  如果一个函数f(x)在某个区间I上有f''(x)(即二阶导数)>0恒成立,那么对于区间I上的任意x,y,总有:

  f(x)+f(y)≥2f[(x+y)/2],如果总有f''(x)<0成立,那么上式的不等号反向。

  2、意义

  (1)斜线斜率变化的速度

  (2)函数的凹凸性。

  二阶导数是比较理论的、比较抽象的一个量,它不像一阶导数那样有明显的几何意义,因为它表示的是一阶导数的变化率。在图形上,它主要表现函数的凹凸性,直观的说,函数是向上突起的,还是向下突起的。

  几何的直观解释:如果如果一个函数f(x)在某个区间I上有f''(x)(即二阶导数)>0恒成立,那么在区间I上f(x)的图象上的任意两点连出的一条线段,这两点之间的函数图象都在该线段的下方,反之在该线段的上方。
  导数的分类:
  一、基本函数的导函数

  C'=0(C为常数)

  (x^n)'=nx^(n-1) (n∈R)

  (sinx)'=cosx

  (cosx)'=-sinx

  (e^x)'=e^x

  (a^x)'=(a^x)*lna(a>0且a≠1)

  [logax)]' = 1/x*(logae)(a>0且a≠1)

  [lnx]'= 1/x

  二、和差积商函数的导函数

  [f(x) + g(x)]' = f'(x) + g'(x)

  [f(x) - g(x)]' = f'(x) - g'(x)

  [f(x)g(x)]' = f'(x)g(x) + f(x)g'(x)

  [f(x)/g(x)]' = [f'(x)g(x) - f(x)g'(x)] / [g(x)^2]

  三、复合函数的导函数

  设 y=u(t) ,t=v(x),则 y'(x) = u'(t)v'(x) = u'[v(x)] v'(x)

  例 :y = t^2 ,t = sinx ,则y'(x) = 2t * cosx = 2sinx*cosx = sin2x一般定义

  设函数在点x。的某个邻域内有定义,当自变量在处取得增量Δx(点仍在该邻域内)时,相应地函数取得增量Δy;如果Δy与Δx之比当Δx→0时的极限存在,则称函数在点处可导,并称这个极限为函数在点x。处的导数,记为,即,也可记作f′(x)〡x=x.,或f′(x.)。

  若将一点扩展成函数()在其定义域包含的某开区间内每一个点,那么函数()在开区间内可导,这时对于内每一个确定的值,都对应着()的一个确定的导数,如此一来每一个导数就构成了一个新的函数,这个函数称作原函数()的导函数,记作:'或者f′(x)。

  导函数的定义表达式为:

  值得注意的是,导数是一个数,是指函数()在点0处导函数的函数值。但通常也可以说导函数为导数,其区别仅在于一个点还是连续的点。

  几何意义

  1.代表函数上某一点在该点处切线的斜率。

  如右图所示,设0为曲线上的一个定点,为曲线上的一个动点。当沿曲线逐渐趋向于点0时,并且割线0的极限位置0存在,则称0为曲线在0处的切线。

  若曲线为一函数 = ()的图像,那么割线0的斜率为:

  当0处的切线0,即0的极限位置存在时,此时,,则0的斜率tanα为:

  上式与一般定义中的导数定义是完全相同,则'(0) = tanα,故导数的几何意义即曲线 = ()在点0(0,(0))处切线的斜率。

看过"导数的定义_导数的定义式"的人还关注了:

1. 高中数学常用导数公式

2. 高二数学导数知识点

3. 高中导数公式大全

4. 数学导数公式证明大全

5. 数学高考必考题型归纳


上一篇:曹婴

下一篇:没有了