七年级数学课件

时间:2024-11-18 02:06:21编辑:笔记君

人教版七年级数学上册教案

相信教案对于大家都不陌生,无论是学习上还是生活中,都会偶尔出现。我为大家整理归纳了人教版 七年级数学 上册教案,希望能对大家有帮助。 人教版七年级数学上册教案1 课题:1.1正数和负数 教学目标1,整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念; 2,能区分两种不同意义的量,会用符号表示正数和负数; 3,体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣。 教学难点正确区分两种不同意义的量。 知识重点两种相反意义的量 教学过程(师生活动)设计理念 设置情境 引入课题上课开始时,教师应通过具体的例子,简要说明在前两个学段我们已经学过的数,并由此请学生思考:生 活中仅有这些“以前学过的数”够用了吗?下面的例子 仅供参考. 师:今天我们已经是七年级的学生了,我是你们的数学老师.下面我先向你们做一下 自我介绍 ,我的名字是 某某 ,身高1.73米,体重58.5千克,今年40岁.我们的班级是七(13)班,有60个同学,其中男同学有22个,占全班总人数的37%… 问题1:老师刚才的介绍中出现了几个数?分别是什么?你能将这些数按以前学过的数的分类 方法 进行分类吗? 学生活动:思考,交流 师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数). 问题2:在生活中,仅有整数和分数够用了吗? 请同学们看书(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流。 (也可以出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等) 学生交流后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有“-”的新数。先回顾小学里学过的数的类型,归纳出我们已经学了整数和分数,然后,举一些实际生活中共有相反意义的量,说明为了表示相反意义的量,我们需要引入负数,这样做强调了数学的严 密性,但对于学生来说,更多 地感到了数学的枯燥乏味为了既复习小学里学过的数,又能激发学生的学习兴 趣,所以创设如下的问题情境,以尽量贴近学生的实际. 这个问题能激发学生探究的欲望,学生自己看书学习是培养学生自主学习的重要途径,都应予以重视。 以上的情境和实例使学生体会生活中处处有数学,通过实例,使学生获取大量的感性材料,为正确建立相反意义的量奠定基础。 分析问题 探究新知问题3:前面带有“一”号的新数我们应怎样命名它呢?为什么要引人负数呢?通常在日常生活中我们用正数和负数分别表示怎样的量呢? 这些问题都必须要求学生理解. 教师可以用多媒体出示这些问题,让学生带着这些问题看书自学,然后师生交流. 这阶段主要是让学生学会正数和负数的表示. 强调:用正,负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:一是它们的意义相反,如向东与向西,收人与支出;二是它们都是数量,而且是同类的量.这些问题是这节课的主要知识,教师要清楚地向学生说明,并且要注意语言的准确与规范,要舍得花时间让学充分发表想法。 举一反三思维拓展经过上面的讨论交流,学生对为什么要引人负数,对怎样用正数和负数表示两种相反意义的量有了初步的理解,教师可以要求学生举出实际生活中类似的例子,以加深对正数和负数概念的理解,并开拓思维. 问题4:请同学们举出用正数和负数表示的例子. 问题5:你是怎样理解“正整数”“负整数,,’’正分数”和“负分数”的呢?请举例说明. 能否举出例子是学生对知识掌握程度的体现,也能进一步帮助学生理解引负数的必要性 人教版七年级数学上册教案2 课题:1.2.1有理数 教学目标1,掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力; 2,了解分类的标准与分类结果的相关性,初步了解“集合”的含义; 3,体验分类是数学上的常用处理问题的方法。 教学难点正确理解分类的标准和按照一定的标准进行分类 知识重点正确理解有理数的概念 教学过程(师生活动)设计理念 探索新知在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出). 问题1:观察黑板上的9个数,并给它们进行分类. 学生思考讨论和交流分类的情况. 学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励. 例如, 对于数5,可这样问:5和5.1有相同的类型吗?5可以表示5个人,而5.1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5.1不是整个的数,称为“正分数,,.??…(由于小数可化为分数,以后把小数和分数都称为分数) 通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数,’. 按照书本的说法,得出“整数”“分数”和“有理数”的概念. 看书了解有理数名称的由来. “统称”是指“合起来总的名称”的意思. 试一试:按照以上的分类,你能作出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的)分类是数学中解决问题的常用手段,这个引入具有开放的特点,学生乐于参与 学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。 有理数的分类表要在黑板或媒体上展示,分类的标准要引导学生去体会 练一练1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流. 2,教科书第10页练习. 此练习中出现了集合的概念,可向学生作如下的说明. 把一些数放在一起,就组成了一个数的集合,简称“数集”,所有有理数组成的数集叫做有理数集.类似地,所有整数组成的数集叫做整数集,所有负数组成的数集叫做负数集……; 数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号. 思考:上面练习中的四个集合合并在一起就是全体有理数的集合吗? 也可以教师说出一些数,让学生进行判断。 集合的概念不必深入展开。 创新探究问题2:有理数可分为正数和负数两大类,对吗?为什么? 教学时,要让学生 总结 已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,逐步得到如下的分类表。 有理数这个分类可视学生的程度确定是否有必要教学。 应使学生了解分类的标准不一样时,分类的结果也是不同的,所以分类的标准要明确,使分类后每一个参加分类的象属于其中的某一类而只能属于这一类,教学中教师可举出通俗易懂的例子作些说明,可以按年龄,也可以按性别、地域来分等 小结与作业 课堂小结到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。 本课作业1,必做题:教科书第18页习题1.2第1题 2,教师自行准备 本课 教育 评注(课堂设计理念,实际教学效果及改进设想) 1,本课在引人了负数后对所学过的数按照一定的标准进行分类,提出了有理数的概 念.分类是数学中解决问题的常用手段,通过本节课的学习使学生了解分类的思想并进 行简单的分类是数学能力的体现,教师在教学中应引起足够的重视.关于分类标准与分 类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不要过多展开。 2,本课具有开放性的特点,给学生提供了较大的思维空间,能促进学生积极主动地参加学习,亲自体验知识的形成过程,可避免直接进行分类所带来的枯燥性;同时还体现合作学习、交流、探究提高的特点,对学生分类能力的养成有很好的作用。 3,两种分类方法,应以第一种方法为主,第二种方法可视学生的情况进行。 课题:1.2.2数轴 教学目标1,掌握数轴的概念,理解数轴上的点和有理数的对应关系; 2,会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数; 3,感受在特定的条件下数与形是可以相互转化的,体验生活中的数学。 教学难点数轴的概念和用数轴上的点表示有理数 知识重点 教学过程(师生活动)设计理念 设置情境 引入课题教师通过实例、课件演示得到温度计读数. 问题1:温度计是我们日常生活中用来测量温度的重要工具,你会读温度计吗?请你尝试读出图中三个温度计所表示的温度? (多媒体出示3幅图,三个温度分别为零上、零度和零下) 问题2:在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境. (小组讨论,交流合作,动手操作)创设问题情境,激发学生的学习热情,发现生活中的数学 点表示数的感性认识。 点表示数的理性认识。 合作交流 探究新知教师:由上述两问题我们得到什么启发?你能用一条直线上的点表示有理数吗? 让学生在讨论的基础上动手操作,在操作的基础上归纳出:可以表示有理数的直线必须满足什么条件? 从而得出数轴的三要素:原点、正方向、单位长度体验数形结合思想;只描述数轴特征即可,不用特别强调数轴三要求。 从游戏中学数学做游戏:教师准备一根绳子,请8个同学走上来,把位置调整为等距离,规定第4个同学为原点,由西向东为正方向,每个同学都有一个整数编号,请大家记住,现在请第一排的同学依次发出口令,口令为数字时,该数对应的同学要回答“到”;口令为该同学的名字时,该同学要报出他对应的“数字”,如果规定第3个同学为原点,游戏还能进行吗?学生游戏体验,对数轴概念的理解 寻找规律 归纳结论问题3: 1,你能举出一些在现实生活中用直线表示数的实际例子吗? 2,如果给你一些数,你能相应地在数轴上找出它们的准确位置吗?如果给你数轴上的点,你能读出它所表示的数吗? 3,哪些数在原点的左边,哪些数在原点的右边,由此你会发现什么规律? 4,每个数到原点的距离是多少?由此你会发现了什么规律? (小组讨论,交流归纳) 归纳出一般结论,教科书第12的归纳。这些问题是本节课要求学会的技能,教学中要以学生探究学习为主来完成,教师可结合教科书给学生适当指导。 巩固练习 教科书第12页练习 小结与作业 课堂小结请学生总结: 1,数轴的三个要素; 2,数轴的作以及数与点的转化方法。 本课作业1,必做题:教科书第18页习题1.2第2题 2,选做题:教师自行安排 本课教育评注(课堂设计理念,实际教学效果及改进设想) 1,数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。 2,教学过程突出了情竟到抽象到概括的主线, 教学方法 体了特殊到一般,数形结合的数学思想方法。 3,注意从学生的知识 经验 出发,充分发挥学生的主体意识,让学生主动参与学习活,并引导学生在课堂上感悟知识的生成,发展与变化,培养学生自主探索的 学习方法 。 人教版七年级数学上册教案3 教学目标 1,掌握绝对值的概念,有理数大小比较法则. 2,学会绝对值的计算,会比较两个或多个有理数的大小. 3.体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想. 教学难点 两个负数大小的比较 知识重点 绝对值的概念 教学过程(师生活动) 设计理念 设置情境 引入课题 星期天黄老师从学校出发,开车去游玩,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一直线上),如果规定向东为正,①用有理数表示黄老师两次所行的路程;②如果汽车每公里耗油0.15升,计算这天汽车共耗油多少升? 学生思考后,教师作如下说明: 实际生活中有些问题只关注量的具体值,而与相反 意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的距离和汽油的价格,而与行驶的方向无关; 观察并思考:画一条数轴,原点表示学校,在数轴上画出表示朱家尖和黄老师家的点,观察图形,说出朱家尖黄老师家与学校的距离. 学生回答后,教师说明如下: 数轴上表示数的点到原点的距离只与这个点离开原点的长度有关,而与它所表示的数的正负性无关; 一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a| 例如,上面的问题中|20|=20,|-10|=10显然,|0|=0 这个例子中,第一问是相反意义的量,用正负 数表示,后一问的解答则与符号没有关系,说明实际生活中有些问题,人们只需知道它们的具体数值,而并不关注它们所表示的意义.为引入绝对值概念做准备.并使学生体 验数学知识与生活实际的联系. 因为绝对值概念的几何意义是数形转化的典型 模型,学生初次接触较难接受,所以配置此观察与思考,为建立绝对值概念作准备. 合作交流 探究规律 例1求下列各数的绝对值,并归纳求有理数a的绝对 有什么规律?、 -3,5,0,+58,0.6 要求小组讨论,合作学习. 教师引导学生利用绝对值的意义先求出答案,然后观察原数与它的绝对值这两个数据的特征,并结合相反数的意义,最后总结得出求绝对值法则(见教科书第15页). 巩固练习:教科书第15页练习. 其中第1题按法则直接写出答案,是求绝对值的基本训练;第2题是对相反数和绝对值概念进行辨别,对学生的分析、判断能力有较高要求,要注意思考的周密性,要让学生体会出不同说法之间的区别. 求一个数的绝时值的法则,可看做是绝对值概 念的一个应用,所以安排此例. 学生能做的尽量让学生完成,教师在教学过程中只是组织者.本着这个理念,设计这个讨论. 结合实际发现新知 引导学生看教科书第16页的图,并回答相关问题: 把14个气温从低到高排列; 把这14个数用数轴上的点表示出来; 观察并思考:观察这些点在数轴上的位置,并思考它们与温度的高低之间的关系,由此你觉得两个有理数可以比较大小吗? 应怎样比较两个数的大小呢? 学生交流后,教师总结: 14个数从左到右的顺序就是温度从低到高的顺序: 在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数. 在上面14个数中,选两个数比较,再选两个数试试,通过比较,归纳得出有理数大小比较法则 想象练习:想象头脑中有一条数轴,其上有两个点,分别表示数一100和一90,体会这两个点到原点的距离(即它们的绝对值)以及这两个数的大小之间的关系. 要求学生在头脑中有清晰的图形. 让学生体会到数学的规定都来源于生活,每一种规定都有它的合理性 数在大小比较法则第2点学生较难掌握,要从绝对值的意义和数轴上的数左小右大这方面结合起来来了解,所以配置想象练习 ,加强数与形的想象。 课堂练习 例2,比较下列各数的大小(教科书第17页例) 比较大小的过程要紧扣法则进行,注意书写格式 练习:第18页练习 小结与作业 课堂小结 怎样求一个数的绝对值,怎样比较有理数的大小? 本课作业 1, 必做题:教产书第19页习题1,2,第4,5,6,10 2, 选做题:教师自行安排 本课教育评注(课堂设计理念,实际教学效果及改进设想) 1,情景的创设出于如下考虑:①体现数学知识与生活实际的紧密联系,让学生在 这些熟悉的日常生活情境中获得数学体验,不仅加深对绝对值的理解,更感受到学 习绝对值概念的必要性和激发学习的兴趣.②教材中数的绝对值概念是根据几何意 义来定义的(其本质是将数转化为形来解释,是难点),然后通过练习归纳出求有理 数的绝对值的规律,如果直接给出绝对值的概念,灌输知识的味道很浓,且太抽象, 学生不易接受. 2, 一个数绝对值的法则,实际上是绝对值概念的直接应用,也体现着分类的数学思想,所以直接通过例1归纳得出,显得非常紧凑,是教学重点;从知识的发展和学生的能力培养角度来看,教师应更重视学生的自主学习和探究的过程,关注学生的思维,做好教学的组织和引导,留给学生足够的空间。 3, 有理数大小的比较法则是大小规定的直接归纳,其中第(2)条学生较难理解,教学 中要结合绝对值的意义和规定:“在数轴上表示有理数,它们从左到右的顺序就是从小到 大的顺序”,帮助学生建立“数轴上越左边的点到原点的距离越大,所以表示的数越小”这个数形结合的模型.为此设置了想象练习. 4,本节课的内容包括绝对值的概念和数的绝对值的求法、有理数大小比较的法则,教 学内容很多,学生接受起来可能会有困难,建议把有理数的大小比较移到下节课教学。 课题: 1.3.1 有理数的加法(一) 教学目标 1,在现实背景中理解有理数加法的意义. 2,经历探索有理数加法法则的过程,理解有理数的加法法则. 3,能积极地参与探究有理数加法法 则的活动,并学会与他人交流合作. 4,能较为熟练地进行有理数的加法 运算,并能解决简单的实际间题. 5,在教学中适当渗透分类讨论思想 教学难点 异号两数相加 知识重点 和的符号的确定 教学过程(师生活动) 设计理念 设置情境 引入课题 回顾用正负数表示数量的实际例子; 在 足球 比赛中,如果把进球数记为正数,失球数记 为负数,它们的和叫做净胜球数.若红队进4个球,失2个球,则红队的胜球数,可以怎样表示?蓝队的胜球数呢? 师:如何进行类似的有理数的加法运算呢?这就是 我们这节课一起与大家探讨的问题. (出示课题) 让学生感受到在实际问题中做加法运算的数可能超出正数的范围,体会学习有理数加法的必要 性,激发学生探究新知的兴趣. 分析问题 探究新知 如果是球队在某场比赛中上半场失了两个球,下 半场失了3个球,那么它的得胜球是几个呢?算式应该 怎么列?若这支球队上半场进了2个球,下半场失了3个球,又如何列出算式,求它的得胜球呢? (学生思考回答) 思考:请同学们想想,这支球队在这场比赛中还可 能出现其他的什么情况?你能列出算式吗?与同伴交流。 学生相互交流后,教师进一步引导学生可以把两个有理数相加归纳为同号两数相加、异号两数相加、一个数同零相加这三种情况. 2,借助数轴来讨论有理数的加法.I 一个物体向左右方向运动,我们规定向左运动为负,向右为正,向右运动5m,记作5m,向左运动5m,记作-5 m. (1)(小组合作)把我们已经得出的几种有理数相加的情况在数轴上用运动的方向表示出来,并求出结果,解释它的意义. (2)交流汇报.(对学习小组的汇报结果,数轴用实物投影仪展示,算式由教师写在黑板上) (3)说一说有理数相加应注意什么?(符号,绝对值)能用自己的语言归纳如何相加吗? (4)在学生归纳的基础上,教师出示有理数加法法则. 有理数加法法则: 1,同号两数相加,取相同的符号,并把绝对值相加. 2,绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0. 3,一个数同。相加,仍得这个数. 再次创设足球比赛情境,一方面与引题相呼应,联系密切,另一方面让学生在 此情境中感受到有理数相加的几种不同情形,并能将它分类,渗透分类讨论思想. 估计学生能顺利地得到(+)+(+),(+)+(一),(一)+(+),(一)十(-),0+(+),0+(一). ,但不能把它归的为同号异 号等三类,所以此处需教师.点拔、指扎,体现教师的引导者作用. ①假设原点0为第一次运动起点,第二次运动 的起点是第一次运动的终点.②若学生在学习小组内不能很好地参与探究,也可以让其参照教科书第21页的“探究”自主进行. ③让学生感受“数学模型” 的思想.④学会与同伴交 流,并在交流中获益.培养学生的语言表达 能力和归纳能力,也许学 生说得不够严谨,但这并不重要,重要的足能用自己的语言表达自己所发现 的规律 解决问题 解决问题 例1计算: (1)(-3)+(-9); (2)(-5)+13; (3)0十(-7); (4)(-4.7)+3.9. 教师板演,让学生说出每一步运算所依据的法则. 请同学们比较,有理数的加法运算与小学时候学的加法有什么异同?(如:有理数加法计算中要注意符号,和不一定大于加数等等) 例2足球循环赛中,红队4:1胜黄队,黄队1:0胜蓝队蓝队1:0胜红队,计算各队的净胜球数. (让学生读数,理解题意,思考解决方案,然后由学生口述,教师板书) 学生活动:请学生说一说在生活中用到有理数加法的例子。 注意点:(1)下先确定是哪种类型的加法再定符号,最后算绝对位.(2)教教师板演的例通要完整体现过程,并要求学生在刚开始学的时候要把中间的过 程写完整.(3)体现化归思想.(4)这里增加了两道题目,要是让学生能较为熟练地运用法则进行计算. 拓宽学生视野,让学 生体会到数学与生活的密切联系。 课堂练习 教科书第23页练习 小结与作业 课堂小结 通过这节课的学习,你有哪些收获,学生自己总结。 本课作业 必做题:阅读教科书第20~22页,教科书第31习题1.3第1、12、第13题。 本课教育评注(课堂设计理念,实际教学效果及改进设想) 1,在本节课的设计中,注重引导学生参与探究、归纳(用自己的语言叙迷)有理数加法法则的过程. 2,注意渗透数学思想方法.数学思想方法的渗透不可能立即见效,也不可能靠一朝一夕让学生理解、掌握,所以,本节课在这一方面主要是让学生感知研究数学问题的一般方法(分类、辩析、归纳、化归等).如在探究加法法则时,有意识地把各种情况先分为三类(同号、异号,一个数同0相加);在运用法则时,当和的符号确定以后,有理数的加法就转化为算术的加减法. 3,注意学生合作学习的学习方式,让学生在与他人合作中受益,学会交流,学会倾听 别人的意见和建议. 人教版七年级数学上册教案相关 文章 : ★ 七年级上册数学《整式的加减》教案精选范文五篇 ★ 2019秋人教版七年级数学上册教材全解读 ★ 新人教版七年级数学下册教案全册 ★ 新人教版七年级数学上册课本答案参考 ★ 七年级数学《有理数的乘方》教案设计 ★ 新人教版七年级数学下册导学案 ★ 初一数学《整式的加减》教学教案设计 ★ 人教版版一年级上册数学第一课教案 ★ 七年级数学正数和负数教案 ★ 七年级数学《从算式到方程》教案设计

人教版七年级上册数学教学课件

  教学是教师的教和学生的学所组成的一种人类特有的人才培养活动。下面是我整理的人教版七年级上册数学教学课件,欢迎阅读参考!    题: 1。1 正数和负数    教学目标   1, 整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念;   2, 能区分两种不同意义的量,会用符号表示正数和负数;   3, 体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣。   教学难点 正确区分两种不同意义的量。   知识重点 两种相反意义的量   教学过程(师生活动)    设置情境   引入课题 上课开始时,教师应通过具体的例子,简要说明在前两个学段我们已经学过的数,并由此请学生思考:生   活中仅有这些“以前学过的数”够用了吗?下面的例子   仅供参考。   师:今天我们已经是七年级的学生了,我是你们的数学老师。下面我先向你们做一下自我介绍,我的名字是XX,身高1。73米,体重58。5千克,今年40岁。我们的班级是七(13)班,有60个同学,其中男同学有22个,占全班总人数的37%…   问题1:老师刚才的介绍中出现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?    学生活动:   思考,交流   师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数)。   问题2:在生活中,仅有整数和分数够用了吗?   请同学们看书(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流。   (也可以出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等)   学生交流后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有“-”的新数。 先回顾小学里学过的数的类型,归纳出我们已经学了整数和分数,然后,举一些实际生活中共有相反意义的量,说明为了表示相反意义的量,我们需要引入负数,这样做强调了数学的严   密性,但对于学生来说,更多   地感到了数学的枯燥乏味为了既复习小学里学过的数,又能激发学生的学习兴   趣,所以创设如下的问题情境,以尽量贴近学生的实际。   这个问题能激发学生探究的欲望,学生自己看书学习是培养学生自主学习的重要途径,都应予以重视。   以上的情境和实例使学生体会生活中处处有数学,通过实例,使学生获取大量的感性材料,为正确建立相反意义的量奠定基础。    分析问题   探究新知 问题3:前面带有“一”号的新数我们应怎样命名它呢?为什么要引人负数呢?通常在日常生活中我们用正数和负数分别表示怎样的量呢?   这些问题都必须要求学生理解。   教师可以用多媒体出示这些问题,让学生带着这些问题看书自学,然后师生交流。   这阶段主要是让学生学会正数和负数的表示。   强调:用正,负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:一是它们的意义相反,如向东与向西,收人与支出;二是它们都是数量,而且是同类的量。 这些问题是这节课的主要知识,教师要清楚地向学生说明,并且要注意语言的准确与规范,要舍得花时间让学充分发表想法。   举一反三思维拓展 经过上面的讨论交流,学生对为什么要引人负数,对怎样用正数和负数表示两种相反意义的量有了初步的理解,教师可以要求学生举出实际生活中类似的例子,以加深对正数和负数概念的理解,并开拓思维。   问题4:请同学们举出用正数和负数表示的例子。   问题5:你是怎样理解“正整数”负整数正分数”和“负分数”的呢?请举例说明。   能否举出例子是学生对知识掌握程度的体现,也能进一步帮助学生理解引负数的必要性   课堂练习 教科书第5页练习    小结与作业   课堂小结 围绕下面两点,以师生共同交流的方式进行:   1, 0由于实际问题中存在着相反意义的量,所以要引人负数,这样数的范围就扩大了;   2,正数就是以前学过的0以外的数(或在其前面加“+”),负数就是在以前学过的0以外的数前面加“-”。   本课作业 教科书第7页习题1。1 第1,2,4,5(第3题作为下节课的思考题。   作业可设必做题和选 做题,体现要求的层次性,以满足不同学生的需要本课教育评注(课堂设计理念,实际教学效果及改进设想)密切联系生活实际,创设学习情境。本课是有理数的第一节课时,引人负数是数的范围的一次重要扩充,学生头脑中关于数的结构要做重大调整(其实是一次知识的顺应过程),而负数相对于以前的数,对学生来说显得更抽象,因此,这个概念并不是一下就能建立的。为了接受这个新的数,就必须对原有的数的结构进行整理,引人币的举例就是这个目的。   负数的产生主要是因为原有的数不够用了(不能正确简洁地表示数量),书本的例子或图片中出现的负数就是让学生去感受和体验这一点。使学生接受生活生产实际中确实存在着两种相反意义的量是本课的教学难点,所以在教学中可以多举几个这方面的例子,并且所举的例子又应该符合学生的年龄和思维特点。当学生接受了这个事实后,引入负数(为了区分这两种相反意义的量)就是顺理成章的事了。   这个教学设计突出了数学与实际生活的紧密联系,使学生体会到数学的应用价值,体现了学生自主学习、合作交流的教学理念,书本中的图片和例子都是生活生产中常见的事实,学生容易接受,所以应该让学生自己看书、学习,并且鼓励学生讨论交流,教师作适当引导就可以了。

人教版七年级上册数学课件

  课件是根据教学大纲的要求,而加以制作的课程软件。它与课程内容有着直接联系。分享了=七年级上册的数学课件,一起来看看吧!    教学目标    一、知识与技能   (1)通过实例,感受引入负数的必要性和合理性,能应用正负数表示生活中具有相反意义的量。   (2)理解有理数的意义,体会有理数应用的广泛性。    二、过程与方法   通过实例的引入,认识到负数的产生是来源于生产和生活,会用正、负数表示具有相反意义的量,能按要求对有理数进行分类。    三、情感态度和价值观   感受数学与现实生活的密切联系,增强学生的数学应用意识,养成学会分析问题、解决问题的良好习惯。    教学重难点   教学重点   正数、负数有意义,有理数的意义,能正确对有理数进行分类。   教学难点   对负数的理解以及正确地对有理数进行分类。   教学工具   PPT多媒体课件    教学过程    一、导入新课   大家知道,数学与数是分不开的,现在我们一起来回忆一下,小学里已经学过哪些类型的数?   学生答后,教师指出:小学里学过的数可以分为三类:自然数(正整数)、分数和零(小数包括在分数之中),它们都是由于实际需要而产生的.   为了表示一个人、两只手、……,我们用到整数1,2,……   为了表示“没有人”、“没有羊”、……,我们要用到0.   但在实际生活中,还有许多量不能用上述所说的自然数、零或分数、小数表示。    二、新课学习   1、某市某一天的最高温度是零上5℃,最低温度是零下5℃。要表示这两个温度,如果只用小学学过的数,都记作5℃,就不能把它们区别清楚。它们是具有相反意义的两个量。   现实生活中,像这样的相反意义的量还有很多……例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155米,“高于”和“低于”其意义是相反的。 “运进”和“运出”,其意义是相反的。   存折上,银行是怎么区分存款和取款的?   同学们能举例子吗?   学生回答后,教师提出:怎样区别相反意义的量才好呢?   待学生思考后,请学生回答、评议、补充。   教师小结:同学们成了发明家.甲同学说,用不同颜色来区分,比如,红色5℃表示零下5℃,黑色5℃表示零上5℃;乙同学说,在数字前面加不同符号来区分,比如,△5℃表示零上5℃,×5℃表示零下5℃…….其实,中国古代数学家就曾经采用不同的颜色来区分,古时叫做“正算黑,负算赤”.如今这种方法在记账的时候还使用.所谓“赤字”,就是这样来的。   现在,数学中采用符号来区分,规定零上5℃记作+5℃(读作正5℃)或5℃,把零下5℃记作-5℃(读作负5℃)。这样,只要在小学里学过的数前面加上“+”或“-”号,就把两个相反意义的量简明地表示出来了。   让学生用同样的方法表示出前面例子中具有相反意义的量:   高于海平面8848米,记作+8848米;低于海平面155米,记作-155米;   教师讲解:一对意义相反的量,一个用正数表示,另一个用负数表示。   强调,数0既不是正数,也不是负数,它是正、负数的界限,表示“基准”的数,零不是表示“没有”,它表示一个实际存在的数量。并指出,正数,负数的“+”“-”的符号是表示性质相反的量,符号写在数字前面,这种符号叫做性质符号。   把正数和零称为非负数    故事:虚伪的零下   在日常生活和生产中大量存在着具有相反意义的量,引入负数完全是实际的需要。   历史上,负数曾经到非议,直到16世纪,欧洲大多数的数学家都还不承认负数,他们觉得“0就是什么也没有”,还有什么东西能够比“什么也没有”还小呢?德国数学家史蒂芬说:“负数是虚伪的零下”,仅是些记号而已。法国数学家帕斯卡则认为,从0减去4是胡说八道。   最早发现负数的是我们中国人,我国的“孟子”一书中就有“邻国之民不加少,寡人之民不加多”其中“加少”就是减少,即加上了负数的意思。秦汉时的古代算经“九章算术”的方程里明确提出:以卖为正,则买为负;余钱为正,亏钱为负。三国时魏国人刘徽在“九章算术”的注解中,则更进一步概括了正、负数的意义,他明确提出,两种得失相反的数,分别叫做正数和负数。负数概念的产生,是世界科学史上的一项重大的发现,也是我国人民对数学发展作出的一项重大贡献,我们应该引以自豪!另外,印度数学家在公元625年(比我国迟几百年),婆罗摩捷多已经提出了负数的概念。他用“财产”表示正数,用“欠债表示负数,并用它们解释正负数的加减法运算。   0只表示没有吗?   1.空罐中的金币数量;   2.温度中的0℃;   3.海平面的高度;   4.标准水位;   5.身高比较的基准;   6.正数和负数的界点;   ……0只是一个基准,它具有丰富的意义,不是简简单单的只表示没有.   2、给出新的整数、分数概念   引进负数后,数的范围扩大了。把正整数、负整数和零统称为整数,正分数、负分数统称为分数。   3、给出有理数概念   整数和分数统称为有理数。   4、有理数的分类   为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类的方法也常常不同根据有理数的定义可将有理数分成两类:整数和分数。有理数还有没有其他的分类方法?   待学生思考后,请学生回答、评议、补充。    课后小结   教师小结:按有理数的符号分为三类:正有理数、负有理数和零。在有理数范围内,正数和零统称为非负数。向学生强调:分类可以根据不同需要,用不同的分类标准,但必须对讨论对象不重不漏地分类。

上一篇:注销支付宝账户

下一篇:没有了