矩阵价格

时间:2024-08-27 03:27:50编辑:笔记君

怎么判断矩阵等价

矩阵等价充要条件:在线性代数和矩阵论中,有两个m×n阶矩阵A和B,如果这两个矩阵满足B=QAP(P是n×n阶可逆矩阵,Q是m×m阶可逆矩阵),那么这两个矩阵之间是等价关系。也就是说,存在可逆矩阵,A经过有限次的初等变换得到B。向量组等价充要条件:两个向量组可以互相线性表示。向量组A:a1,a2,am与向量组B:b1,b2,bn的等价秩相等条件是R(A)=R(B)=R(A,B)。相关如下矩阵A和A等价(反身性);矩阵A和B等价,那么B和A也等价(等价性);矩阵A和B等价,矩阵B和C等价,那么A和C等价(传递性);矩阵A和B等价,那么IAI=KIBI。(K为非零常数)具有行等价关系的矩阵所对应的线性方程组有相同的解。等价向量组具有传递性、对称性及反身性。但向量个数可以不一样,线性相关性也可以不一样。任一向量组和它的极大无关组等价。向量组的任意两个极大无关组等价。两个等价的线性无关的向量组所含向量的个数相同。等价的向量组具有相同的秩,但秩相同的向量组不一定等价。如果向量组A可由向量组B线性表示,且R(A)=R(B),则A与B等价。

矩阵等价的概念是什么等价的概念?

矩阵等价意思是:在线性代数和矩阵论中,有两个m×n阶矩阵A和B,如果这两个矩阵满足B=QAP(P是n×n阶可逆矩阵,Q是m×m阶可逆矩阵),那么这两个矩阵之间是等价关系。也就是说,存在可逆矩阵(P、Q),使得A经过有限次的初等变换得到B。相关内容解释:矩阵,Matrix。在数学上,矩阵是指纵横排列的二维数据表格,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考矩阵理论。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。

上一篇:嘉特商城官网

下一篇:胆碱能型荨麻疹