氢致开裂的氢致开裂 - 分类
1)氢脆:各种情况下产生的氢原子直接渗透到钢内部后,使钢晶粒间原子结合力降低,造成钢材的延伸性、端面收缩率降低,强度也发生变化。氢致开裂 - 氢脆理论在裂纹尖端有与阳极反应相应的阴极反应发生。所生成的氢或加工氢进入钢中引起氢致开裂。2)氢腐蚀:氢与钢中的碳化物发生反应产生甲烷,甲烷气体不能从钢中扩散出去,聚集在晶粒间形成局部高压,造成应力集中,进而使钢材产生微裂纹或鼓泡。
氢致开裂的氢致开裂 - 类型
在石油天然气行业和石化行业中,如果在湿H2S环境下选用碳钢或低合金钢,那么钢板会发生很严重的脆化。这种脆化的机理是:H2S与钢材表面发生腐蚀反应产生氢,而后氢又被钢材吸收导致氢脆。对于低合金钢来说,这种破坏可分为以下几种类型:1)氢诱导开裂(HIC)。HIC不需要应力就可以在钢材内部产生并传播。2)硫化物应力开裂(SSC)。SSC主要出现在硬度高的区域,如焊缝区。3) 应力方向氢诱导开裂(SOHIC)。事实上,SOHIC可被看作是HIC和SSC共同作用的结果。4)氢致延迟裂纹:容器在焊接过程中,焊接材料中水分或油污在电弧高温作用下分解产生氢,这些氢一部分进入熔融的焊缝金属中,当焊缝冷却时来不急扩散出去形成局部高压而导致焊缝出现微裂纹的现象。
焊接时裂纹产生的原因
问题一:焊接缺陷(裂纹)概念 、形成缺陷原因、解决措施!!!(字越多越好、越详细越好!) 5分 1、产生裂纹的概念:
焊缝裂纹是焊接过程中或焊接完成后在焊接区域中出现的金属局部破裂的表现。
焊缝金属从熔化状态到冷却凝固的过程经过热膨胀与冷收缩变化,有较大的冷收缩应力存在,而且显微组织也有从高温到低温的相变过程而产生组织应力,更加上母材非焊接部位处于冷固态状况,与焊接部位存在很大的温差,从而产生热应力等等,这些应力的共同作用一旦超过了材料的屈服极限,材料将发生塑性变形,超过材料的强度极限则导致开裂。裂纹的存在大大降低了焊接接头的强度,并且焊缝裂纹的尖端也成为承载后的应力集中点,成为结构断裂的起源。
裂纹可能发生在焊缝金属内部或外部,或者在焊缝附近的母材热影响区内,或者位于母材与焊缝交界处等等。根据焊接裂纹产生的时间和温度的不同,可以把裂纹分为以下几类:
a.热裂纹(又称结晶裂纹):
产生于焊缝形成后的冷却结晶过程中,主要发生在晶界上,金相学中称为沿晶裂纹,其位置多在焊缝金属的中心和电弧焊的起弧与熄弧的弧坑处,呈纵向或横向辐射状,严重时能贯穿到表面和热影响区。热裂纹的成因与焊接时产生的偏析、冷热不均以及焊条(填充金属)或母材中的硫含量过高有关。
b.冷裂纹:
焊接完成后冷却到低温或室温时出现的裂纹,或者焊接完成后经过一段时间才出现的裂纹(这种冷裂纹称为延迟裂纹,特别是诸如14MnMoVg、18MnMoNbg、14MnMoNbB等合金钢种容易产生此类延迟裂纹,也称之为延迟裂纹敏感性钢)。冷裂纹多出现在焊道与母材熔合线附近的热影响区中,其取向多与熔合线平行,但也有与焊道轴线呈纵向或横向的冷裂纹。冷裂纹多为穿晶裂纹(裂纹穿过晶界进入晶粒),其成因与焊道热影响区的低塑性组织承受不了冷却时体积变化及组织转变产生的应力而开裂,或者焊缝中的氢原子相互结合形成分子状态进入金属的细微孔隙中时将造成很大的压应力连同焊接应力的共同作用导致开裂(称为氢脆裂纹),以及焊条(填充金属)或母材中的磷含量过高等因素有关。
c.再热裂纹:
焊接完成后,如果在一定温度范围耿对焊件再次加热(例如为消除焊接应力而采取的热处理或者其他加热过程,以及返修补焊等)时有可能产生的裂纹,多发生在焊结过热区,属于沿晶裂纹,其成因与显微组织变化产生的应变有关。
2、产生裂纹的原因:
(1)焊件含有过高的碳、锰等合金元素。
(2)焊条品质不良或潮湿。
(3)焊缝拘束应力过大。
(4)母条材质含硫过高不适于焊接。
(5)施工准备不足。
(6)母材厚度较大,冷却过速。
(7)电流太强。
(8)首道焊道不足抵抗收缩应力。
3、解决措施:
(1)使用低氢系焊条。
(2)使用适宜焊条,并注意干燥。
(3)改良结构设计,注意焊接顺序,焊接后进行热处理。
(4)避免使用不良钢材。
(5)焊接时需考虑预热或后热。
(6)预热母材,焊后缓冷。
(7)使用适当电流。
(8)首道焊接之焊着金属须充分抵抗收缩应力。
问题二:钢材在焊接时产生裂纹是什么原因 裂纹是多种原因造成的.比如预热温度不够、层间温度过高、母材自身不合格、焊材和母材不匹配、焊接速度过快、焊接产生变形等等都可能引起焊接裂纹的产生.具体是什么原因要示你当时的情况来决定了
问题三:焊接时冷裂纹和热裂纹的产生 1、冷裂纹
冷裂纹的特征
多出现在焊道与母材熔合线附近的热影响区中,多为穿晶裂纹。
冷裂纹无氧化色彩。
冷裂纹发生于碳钢或合金钢,高的含碳量和合金含量。
冷裂纹具有延迟性质,主要是延迟裂纹。
冷裂纹产生原因
焊接接头(焊缝和热影响区及熔合区)的淬火倾向严重,产生淬火组织,导致接头性能脆化。
焊接接头含氢量较高,并聚集在焊接缺陷处形成大量氢分子,造成非常大的局部压力,使接头脆化;磷含量过高同样产生冷裂纹。
存在较大的拉应力。因氢的扩散需要时间,所以冷裂纹在焊后需延迟一段时间才出现。由于是氢所诱发的,也叫氢致裂纹。
防止冷裂纹的措施
选用碱性焊条或焊剂,减少焊缝金属中氢的含量,提高焊缝金属塑性。
焊条焊剂要烘干,焊缝坡口及附近母材要去油、水、除锈,减少氢的来源。
工件焊前预热,焊后缓冷(大部分材料的温度可查表),可降低焊后冷却速度,避免产生淬硬组织,并可减少焊接残余应力。
采取减小焊接应力的工艺措施,如对称焊,小线能量的多层多道焊等,焊后进行清除应力的退火处理。
焊后立即进行去氢(后热)处理,加热到250℃,保温2~6h,使焊缝金属中的散氢逸出金属表面。
2、热裂纹(又称结晶裂纹)
热裂纹的特征
热裂纹可发生在焊缝区或热影响区,沿焊缝长度方向分布。
热裂纹的微观特征是沿晶界开裂,所以又称晶间裂纹。因热裂纹在高温下形成,
有氧化色彩。
焊后立即可见。
热裂纹产生原因。
焊缝金属的晶界上存在低熔点共晶体(含硫、磷、铜等杂质)。
接头中存在拉应力。
防止措施
选用适宜的焊接材料,严格控制有害杂质碳、硫、磷的含量。Fe和FeS易形成低熔点共晶,其熔点为988℃,很容易产生热裂纹。
严格控制焊缝截面形状,避免突高,扁平圆弧过渡。
缩小结晶温度范围,改善焊缝组织,细化焊缝晶粒,提高塑性减少偏析。
确定合理的焊接工艺参数,减缓焊缝的冷却速度,以减小焊接应力。如采用小线能量,焊前预热,合理的焊缝布置等。
问题四:产生冷裂纹的因素有哪些 冷裂纹产生的原因是:
(1)焊缝中的氢在结晶过程中要向热影响区扩散、聚集。
(2)如果被焊材料的淬透性较大,则焊后冷却下来时,在热影响区形成马氏体组织,其性脆而硬。
(3)焊接时的残余应力。
这三个因素(氢、淬硬组织和应力)的综合作用,就会导致冷裂纹的产生。氢在金属里的扩散速度有快有慢,因此冷裂纹产生的时间也不同。有的在焊后冷却过程中产生,有的甚至放置一段时间后才产生,故又称为延迟裂纹。
防止冷裂纹的措施有:
(l)焊前预热和焊后缓冷。
(2)采用减少氢的工艺措施。
(3)合理选用焊接材料。
(4)采用适当的工艺参数。
(5)选用合理的装焊顺序。
(6)进行焊后热处理。
问题五:焊接口出现裂纹是什么原因造成的? 你也说的不是很详细,焊接裂纹产生的具体原因是有很多的,比如说焊接参数,焊材等等。据我猜测你是不是两种异型钢材进行的焊接啊,具体选择什么类型的焊条是有讲究的,应该是按照材料强度要求高的那种类型进行焊接,你是不是焊条选择错了呢?
问题六:常见的焊接缺陷有哪几种?产生原因有哪些 ①气孔:焊接时,熔池中的气泡在凝固时未能逸出而残留下来所形成的空穴。气孔可分为条虫状气孔、针孔、柱孔,按分布可分为密集气孔,链孔等。
气孔的生成有工艺因素,也有冶金因素。工艺因素主要是焊接规范、电流种类、电弧长短和操作技巧。冶金因素,是由于在凝固界面上排出的氮、氢、氧、一氧化碳和水蒸汽等所造成的。
②夹渣:焊后残留在焊缝中的溶渣,有点状和条状之分。产生原因是熔池中熔化金属的凝固速度大于熔渣的流动速度,当熔化金属凝固时,熔渣未能及时浮出熔池而形成。它主要存于焊道之间和焊道与母材之间。
③未熔合:熔焊时,焊道与母材之间或焊道与焊道之间未完全熔化结合的部分;点焊时母材与母材之间未完全熔化结合的部分,称之。
未熔合可分为坡口未熔合、焊道之间未熔合(包括层间未熔合)、焊缝根部未熔合。按其间成分不同,可分为白色未熔合(纯气隙、不含夹渣)、黑色未熔合(含夹渣的)。
产生机理:a.电流太小或焊速过快(线能量不够);b.电流太大,使焊条大半根发红而熔化太快,母材还未到熔化温度便覆盖上去。C.坡口有油污、锈蚀;d.焊件散热速度太快,或起焊处温度低;e.操作不当或磁偏吹,焊条偏弧等。
④未焊透:焊接时接头根部未完全熔透的现象,也就是焊件的间隙或钝边未被熔化而留下的间隙,或是母材金属之间没有熔化,焊缝熔敷金属没有进入接头的根部造成的缺陷。
产生原因:焊接电流太小,速度过快。坡口角度太小,根部钝边尺寸太大,间隙太小。焊接时焊条摆动角度不当,电弧太长或偏吹(偏弧)
⑤裂纹(焊接裂纹):在焊接应力及其它致脆因素共同作用下,焊接接头中局部地区的金属原子结合力遭到破坏而形成的新界面而产生缝隙,称为焊接裂纹。它具有尖锐的缺口和大的长宽比特征。按其方向可分为纵向裂纹、横向裂纹,辐射状(星状)裂纹。按发生的部位可分为根部裂纹、弧坑裂纹,熔合区裂纹、焊趾裂纹及热响裂纹。按产生的温度可分为热裂纹(如结晶裂纹、液化裂纹等)、冷裂纹(如氢致裂纹、层状撕裂等)以及再热裂纹。
产生机理:一是冶金因素,另一是力学因素。冶金因素是由于焊缝产生不同程度的物理与化学状态的不均匀,如低熔共晶组成元素S、P、Si等发生偏析、富集导致的热裂纹。此外,在热影响区金属中,快速加热和冷却使金属中的空位浓度增加,同时由于材料的淬硬倾向,降低材料的抗裂性能,在一定的力学因素下,这些都是生成裂纹的冶金因素。力学因素是由于快热快冷产生了不均匀的组织区域,由于热应变不均匀而导至不同区域产生不同的应力联系,造成焊接接头金属处于复杂的应力――应变状态。内在的热应力、组织应力和外加的拘束应力,以及应力集中相叠加构成了导致接头金属开裂的力学条件。
⑥形状缺陷
焊缝的形状缺陷是指焊缝表面形状可以反映出来的不良状态。如咬边、焊瘤、烧穿、凹坑(内凹)、未焊满、塌漏等。
产生原因:主要是焊接参数选择不当,操作工艺不正确,焊接技能差造成。
问题七:焊接后焊件出现裂纹是什么原因 你说的材料应该是0cr13吧。复合钢管应该先焊接基层,再过渡层、再复层。你管子多大?要是打得话,开内坡口,先j507焊基层,然后用A302焊过渡层,不预热,控制层温小于60摄氏度,采用小规范操作。一直焊至盖面。
问题八:J421电焊条焊接时出现裂纹。 10分 你好,从你的图片看,裂纹很长,基本贯通,而且都基本在焊缝的中间,没有什么好疑问的,就是热裂纹。最好焊前预热,预热的时候范围稍微大一点,保证温度场的均匀。
望采纳,谢谢。
焊接裂纹的原因
亲,焊接裂纹产生原因有很多,种类有:冷裂纹、热裂纹、再热裂纹等。比如:焊条电弧焊裂纹出现原因:(1)焊件含有过高的碳、锰等合金元素.(2)焊条品质不良或潮湿.(3)焊缝拘束应力过大.(4)母条材质含硫过高不适于焊接.(5)施工准备不足.(6)母材厚度较大,冷却过速.(7)电流太强.(8)首道焊道不足抵抗收缩应力.【摘要】
焊接裂纹的原因【提问】
亲,焊接裂纹产生原因有很多,种类有:冷裂纹、热裂纹、再热裂纹等。比如:焊条电弧焊裂纹出现原因:(1)焊件含有过高的碳、锰等合金元素.(2)焊条品质不良或潮湿.(3)焊缝拘束应力过大.(4)母条材质含硫过高不适于焊接.(5)施工准备不足.(6)母材厚度较大,冷却过速.(7)电流太强.(8)首道焊道不足抵抗收缩应力.【回答】
亲,处理方法:(1)使用低氢系焊条.(2)使用适宜焊条,并注意干燥.(3)改良结构设计,注意焊接顺序,焊接后进行热处理.(4)避免使用不良钢材.(5)焊接时需考虑预热或后热.(6)预热母材,焊后缓冷.(7)使用适当电流.(8)首道焊接之焊着金属须充分抵抗收缩应力.【回答】
氢氧焰对钢的影响?
氢脆(hydrogen embrittlement)是指金属材料在冶炼,加工,热处理,酸洗和电镀等过程中,或在含氢介质中长期使用时,材料由于吸氢或氢渗而造成机械性能严重退化,发生脆断的现象.
从机械性能上看,氢脆有以下表现: 氢对金属材料的屈服强度和极限强度影响不大,但使延伸率是断面收缩率严重下降,疲劳寿命明显缩短,冲击韧性值显著降低.在低于断裂强度拉伸应力的持续作用下,材料经过一段时期后会突然脆断.
氢脆的机理学术界还有争议,但大多数学者认为以下几种效应是氢脆发生的主要原因:
1. 在金属凝固的过程中,溶入其中的氢没能及时释放出来,向金属中缺陷附近扩散,到室温时原子氢在缺陷处结合成分子氢并不断聚集,从而产生巨大的内压力,使金属发生裂纹.
2. 在石油工业的加氢裂解炉里,工作温度为300-500度,氢气压力高达几十个到上百个大气压力,这时氢可渗入钢中与碳发生化学反应生成甲烷. 甲烷气泡可在钢中夹杂物或晶界等场所成核,长大,并产生高压导致钢材损伤.
3. 在应力作用下,固溶在金属中的氢也可能引起氢脆.金属中的原子是按一定的规则周期性地排列起来的,称为晶格.氢原子一般处于金属原子之间的空隙中,晶格中发生原子错排的局部地方称为位错,氢原子易于聚集在位错附近.金属材料所外力作用时,材料内部的应力分布是不均匀的,在材料外形迅速过渡区域或在材料内部缺陷和微裂纹处会发生应力集中.在应力梯度作用下氢原子在晶格内扩散或跟随位错运动向应力集中区域.由于氢和金属原子之间的交互作用使金属原子间的结合力变弱,这样在高氢区会萌生出裂纹并扩展,导致了脆断. 另外,由于氢在应力集中区富集促进了该区域塑性变形,从而产生裂纹并扩展. 还有,在晶体中存在着很多的微裂纹,氢向裂纹聚集时有吸附在裂纹表面,使表面能降低,因此裂纹容易扩展.
4. 某些金属与氢有较大的亲和力,过饱和氢与这种金属原子易结合生成氢化物,或在外力作用下应力集中区聚集的高浓度的氢与该种金属原子结合生成氢化物.氢化物是一种脆性相组织,在外力作用下往往成为断裂源,从而导致脆性断裂.
氢脆给人类利用金属带来了风险,因此研究氢脆的目的主要在于防止氢脆,由于氢脆的原因很多,而且人类的认识也不够透彻完整,所以现在还无法完全防止氢脆.
目前防止氢脆的措施有以下几种:
1. 避免过量氢带入--在金属的冶炼过程中降低相对湿度,对各种添加剂和钢锭模进行烘烤保持干燥.
2. 去氢处理--减缓钢锭冷却速度使氢有足够的时间逸出,或把钢材放在真空炉中退火除氢.
3. 钢中添加适当的合金元素,形成弥散分布的第二相,做为氢的不可逆陷阱,使得材料中的可活动氢的含量相对地减少,从而降低材料的氢脆倾向.
4. 发展新的抗氢钢种,氢在体心立方晶体结构中的扩散速度比六角密堆结构或面心立方结构中的扩散速度高得多,所以抗氢钢常以具有面心立方结构的相为基,再加其他强化措施,可使其满足使用强度要求.
5. 采用适当的防护措施--在酸洗或电镀时在酸液或电解液中添加缓蚀剂,使溶液中产生的大量氢原子在金属表面相互结合成氢分子直接从溶液中逸出,避免氢原子进入金属内部.
此外,在构件外涂敷防腐层或在工作介质中施加保护电位,可避免构件与介质反应生成氢.
一般在使用氧炔焰时产生氢脆的可能性比较小。
碳钢设备如何防止氢脆
氢脆(HE) 又称氢致开裂或氢损伤,是一种由于金属材料中氢引起的材料塑性下降、开裂或损伤的现象。所谓“损伤”,是指材料的力学性能下降。在氢脆情况下会发生“滞后破坏”,因为这种破坏需要经历一定时间才发生。氢的来源有“内含”的及“外来”的两种:前者指材料在冶炼及随后的机械制造(如焊接、酸洗、电镀等)过程中所吸收的氢;而后者是指材料在致氢环境的使用过程中所吸收的氢(见金属中氢)。致氢环境既包括含有氢的气体,如H2、H2S;也包括金属在水溶液中腐蚀时阴极过程所放出的氢。影响氢脆的因素有:
1) 氢分压。氢分压越高,延迟破坏时间越短;
2) 温度,高温下不发生氢脆,此时它已转化为氢腐蚀。温度太低时也不发生,因为此时氢
不具备大量渗入金属晶格内的活性。它一般多发生在-30℃~30℃温度区间内;
3)金属材料的强度,强度越高,发生氢脆的可能性越大;
4)金属的金相组织,如马氏体组织发生氢脆的指数是球状珠光体组织的3 倍;
5)应力水平,材料的脆断是在足够的应力作用下发生的,降低应力水平,使其低于晶格滑移所需的能量,氢脆将不会发生。
工程上防止氢脆发生的措施有:避开其温度敏感区使用;选用强度低的材料;降低金属构件的应力水平。防止氢脆措施:
1)降低氢含量;
2)提高氢在金属或合金中的固溶度;
3)保证使用环境;
4)选择正确的热处理工艺,消除残余应力;
5)其他,如表面涂层,阳极化处理,加吸氢介质等
金属材料和非金属材料的表面处理各包括哪些方式
金属材料的表面处理方式:
金属材料的表面处理主要包括除油、除锈和活化。
(1)金属材料表面除油 金属材料在机械加工和储存过程中,表面通常黏附着油污,它的存在严重影响着良好粘接力的形成。在粘接之前必须将它们全部去除。除油的方法主要有四种,即碱液除油、有机溶剂除油、电解除油以及超声波除油。超声波除油是将欲除油的工件放到超声波清洗槽中,槽中放有溶剂或含有表面活性剂的溶液,然后开动高频发生器,当超声波频率达到20~5000Hz时,产生的能量使槽内溶液翻动,并对工作表面进行冲刷,使油污等被冲击下来。超声波除油时,可根据被除油污的种类选择适宜的溶剂。
(2)金属材料表面除锈 金属材料表面的锈蚀层和污染物可以用机械或化学处理方法除掉。
机械方法是工业上常用的表面处理方法之一,可以直接去除表面的污物,而且还能获得一定的表面粗糙度,这对粘接密封十分有利。常用的方法有手工除锈、电动工具除锈和喷砂除锈等。
喷砂除锈是通过压缩空气将砂石喷射到金属表面,经强力摩擦与冲击作用清除锈蚀。用于喷砂的砂料有矿砂、河砂、海砂、刚玉砂、金刚砂、石英砂、玻璃珠、金属弹丸等。多用于大面积工件的处理。
化学除锈是将金属在活性溶液中进行化学腐蚀处理,不仅能使表面活化或钝化,还能在金属表面形成具有良好内聚强度的表面氧化层,这对形成牢固的粘接非常有利。化学除锈有化学侵蚀和电化学侵蚀两种。
化学侵蚀钢铁材料表面常用硫酸、盐酸或其他混合酸等。为防止产生的氢气向金属内部扩散而造成氢脆,一般在处理液中加入若丁或邻二甲苯硫脲。在处理铸铁件时,加入一些氢氟酸,以使其含有的硅变成氟硅酸。铝和铝合金常用10%的氢氧化钠水溶液侵蚀,再用硝酸处理。不锈钢常用浓硝酸和氢氟酸。铜及铜合金常用浓盐酸和浓硫酸。
电化学侵蚀是将金属放在电解槽中作为电极(阴极或阳极),在直流电的作用下,借助金属的电化学和化学溶解及金属上析出的气泡将表面的氧化层清除。把处理的金属作为阳极时,在电流作用下,金属表面析出氧气泡,作为阴极时析出的是氢气泡。阳极侵蚀用的电解液是15%~20%的硫酸溶液,温度10~30℃。可能存在的职业病危害因素:机械除锈时产生矿砂尘、刚玉尘、石英尘等,并产生强烈的噪声和振动,化学除锈和电化学除锈时存在硫酸、盐酸、氢氟酸、氢氧化钠等多种酸碱物品及极低频电磁场等。
非金属材料的表面处理方式:
(1)机械处理 用砂纸打磨,去除表面的油污、脱膜剂、增塑剂等,然后涂胶粘接。
(2)物理处理 用电场、火焰等物理手段对被粘物进行表面处理,主要用于非极性高分子材料。
(3)火焰处理 用燃烧的气体火焰在被粘物表面进行瞬时灼烧,使其表面氧化,得到含碳的极性表面。
(4)放电处理 在真空或惰性气体环境中,对非金属材料进行高压气体放电处理,使其表面氧化或交联而产生极性表面,根据不同的装置可分为电晕、接触、辉光等放电法。
(5)等离子放电 等离子处理是用无电极的高频电场连续不断地提供能量,使等离子室内的气体分子激化成带正电离子和电子的等离子体,这些等离子以几百至几千毫升/分钟的气流速度碰撞要处理的材料表面,使其生成极性层。
(6)化学处理 非金属材料的化学处理是用酸、强氧化剂等将其表面的一切油污杂质清除掉,或将非极性表面通过氧化作用生成一层含碳极性物质以增强粘接效果。化学处理法常用的化学试剂有重铬酸钠、浓硫酸、表面活性剂、偶联剂、氢氧化钠等。可能存在的职业病危害因素:砂轮磨尘、炭黑尘、重铬酸钠、浓硫酸、表面活性剂、偶联剂、氢氧化钠、机械噪声与振动、高频电磁场、电弧光产生的紫外线、极低频电磁场等。在实际应用时因选择的处理方法不同而异。
氢脆现象的避免和消除的措施
1、减少金属中渗氢的数量 在除锈和氧化皮时,尽量采用吹砂除锈,若采用酸洗,需在酸洗液中添加若丁等缓蚀剂;在除油时,采用化学除油、清洗剂或溶剂除油,渗氢量较少,若采用电化学除油,先阴极后阳极;在电镀时,碱性镀液或高电流效率的镀液渗氢量较少。2、采用低氢扩散性和低氢溶解度的镀涂层一般认为,在电镀Cr、Zn、Cd、Ni、Sn、Pb时,渗入钢件的氢容易残留下来,而Cu、Mo、Al、Ag、Au、W等金属镀层具有低氢扩散性和低氢溶解度,渗氢较少。在满足产品技术条件要求的情况下,可采用不会造成渗氢的涂层,如达克罗涂覆层可以代替镀锌,不会发生氢脆,耐蚀性提高7~10倍,附着力好,膜厚6~8μm,相当于较薄的镀锌层,不影响装配。3、镀前去应力和镀后去氢以消除氢脆隐患若零件经淬火、焊接等工序后内部残留应力较大,镀前应进行回火处理,减少发生严重渗氢的隐患。对电镀过程中渗氢较多的零件原则上应尽快去氢,因为镀层中的氢和表层基体金属中的氢在向钢基体内部扩散,其数量随时间的延长而增加。防氢脆现象产品新的国际标准草案规定“最好在镀后1h内,但不迟于3h,进行去氢处理”。国内也有相应的标准,对电镀锌前、后的去氢处理作了规定。电镀后去氢处理工艺广泛采用加热烘烤,常用的烘烤温度为150~300°C,保温2~24h。具体的处理温度和时间应根据零件大小、强度、镀层性质和电镀时间的长短而定。去氢处理常在烘箱内进行。镀锌零件的去氢处理温度为110~220°C,温度控制的高低应根椐基体材料而定。对于弹性材料、0.5mm以下的薄壁件及机械强度要求较高的钢铁零件,镀锌后必须进行去氢处理。为了防止“镉脆”,镀镉零件的去氢处理温度不能太高,通常为180~200°C。