欧拉函数计算公式是什么?
它于1640年由Descartes首先给出证明,后来Euler(欧拉)于1752年又独立地给出证明,我们称其为欧拉定理,在国外也有人称其为Descartes定理,R+V-E=2就是欧拉公式。在任何一个规则球面地图上,用R记区域个数,V记顶点个数,E记边界个数,则R+V-E=2,这就是欧拉定理。当R=2时。由说明1这两个区域可想象为以赤道为边界的两个半球面,赤道上有两个“顶点”将赤道分成两条“边界”。即R=2,V=2,E=2于是R+V-E=2,欧拉定理成立。
什么是欧拉函数
欧拉函数就是指:对于一个正整数n,小于或等于n的正整数中与n互质的正整数个数(包括1)的个数,记作 φ ( n ) 。在数论,对正整数 n,欧拉函数是小于或等于 n 的正整数中与 n 互质的数的数目(因此φ(1)=1)。此函数以其首名研究者欧拉命名(Euler’s totient function),它又称为 Euler’s totient function、φ函数、欧拉商数等。 例如φ(8)=4,因为 1,3,5,7 均和 8 互质。从欧拉函数引伸出来在环论方面的事实和拉格朗日定理构成了欧拉定理的证明。通式:(其中 p1, p2……pn 为 x 的所有质因数,x 是不为 0 的整数)定义 φ(1)=1(和 1 互质的数(小于等于 1)就是 1 本身)。注意:每种质因数只有一个。比如 12=2*2*3 那么φ(12)=φ(4*3)=φ(2^2*3^1)=(2^2-2^1)*(3^1-3^0)=4若 n 是质数 p 的 k 次幂,,因为除了 p 的倍数外,其他数都跟 n 互质。设 n 为正整数,以 φ(n)表示不超过 n 且与 n 互素的正整数的个数,称为 n 的欧拉函数值φ:N→N,n→φ(n)称为欧拉函数。欧拉函数是积性函数——若 m,n 互质,特殊性质:当 n 为奇质数时,, 证明与上述类似。
欧拉公式是什么?
问题一:欧拉公式具体是什么? 欧拉公式有4条
(1)分式:
a^r/(a-b)(a-c)+b^r/(b-c)(b-a)+c^r/(c-a)(c-b)
当r=0,1时式子的值为0
当r=2时值为1
当r=3时值为a+b+c
(2)复数
由e^iθ=cosθ+isinθ,得到:
sinθ=(e^iθ-e^-iθ)/2i
cosθ=(e^iθ+e^-iθ)/2
(3)三角形
设R为三角形外接圆半径,弗为内切圆半径,d为外心到内心的距离,则:
d^2=R^2-2Rr
(4)多面体
设v为顶点数,e为棱数,是面数,则
v-e+f=2-2p
p为欧拉示性数,例如
p=0 的多面体叫第零类多面体
p=1 的多面体叫第一类多面体
等等
其实欧拉公式是有4个的,上面说的都是多面体的公式
问题二:欧拉公式是什么? 欧拉公式
公式描述:e^ix=cosx+isinx
公式中e是自然对数的底,i是虚数单位。
问题三:欧拉公式具体是什么? 欧拉公式有4条
(1)分式:
a^r/(a-b)(a-c)+b^r/(b-c)(b-a)+c^r/(c-a)(c-b)
当r=0,1时式子的值为0
当r=2时值为1
当r=3时值为a+b+c
(2)复数
由e^iθ=cosθ+isinθ,得到:
sinθ=(e^iθ-e^-iθ)/2i
cosθ=(e^iθ+e^-iθ)/2
(3)三角形
设R为三角形外接圆半径,弗为内切圆半径,d为外心到内心的距离,则:
d^2=R^2-2Rr
(4)多面体
设v为顶点数,e为棱数,是面数,则
v-e+f=2-2p
p为欧拉示性数,例如
p=0 的多面体叫第零类多面体
p=1 的多面体叫第一类多面体
等等
其实欧拉公式是有4个的,上面说的都是多面体的公式
问题四:欧拉公式是什么? 欧拉公式
公式描述:e^ix=cosx+isinx
公式中e是自然对数的底,i是虚数单位。
欧拉公式有哪两个?
自然对数:以常数e为底数的对数叫做自然对数记作ln N(N>0).欧拉(Leonhard Euler ,1707-1783) 著名的数学家,瑞士人,大部分时间在俄国和法国度过.他17岁获得硕士学位,早年在数学天才贝努里赏识下开始学习数学,毕业后研究数学,是数学史上最高产的作家.在世发表论文700多篇,去世后还留下100多篇待发表.其论著几乎涉及所有数学分支. 著名的七座桥问题也是他解决的。 他是创立数学符号的大师。首先使用f(x)表示函数,首先用∑表示连加,首先用i表示虚数单位.1727年首先引用e来表示自然对数的底。 欧拉公式有两个 一个是关于多面体的 如凸多面体面数是F顶点数是V棱数是E则V-E+F=2这个2就称欧拉示性数。 另一个是关于级数展开的 e^(i*x)=cos(x)+i*sin(x). 这里i是虚数单位i的平方=-1。当x趋近于正无穷或负无穷时,[1+(1/x)]^x的极限就等于e,实际上e就是通过这个极限而发现的。它是个无限不循环小数。其值约等于2.718281828... 它用e表示 以e为底数的对数通常用于㏑ 而且e还是一个超越数 e在科学技术中用得非常多,一般不使用以10为底数的对数。以e为底数,许多式子都能得到简化,用它是最“自然”的,所以叫“自然对数”。 涡形或螺线型是自然事物极为普遍的存在形式,比如:一缕袅袅升上蓝天的炊烟,一朵碧湖中轻轻荡开的涟漪,数只缓缓攀援在篱笆上的蜗牛和无数在恬静的夜空携拥着旋舞的繁星…… 螺线特别是对数螺线的美学意义可以用指数的形式来表达: φkρ=αe 其中,α和k为常数,φ是极角,ρ是极径,e是自然对数的底。为了讨论方便,我们把e或由e经过一定变换和复合的形式定义为“自然律”。因此,“自然律”的核心是e,其值为2.71828……,是一个无限不循环数。 “自然律”之美 “自然律”是e 及由e经过一定变换和复合的形式。e是“自然律”的精髓,在数学上它是函数: (1+1/x)^x 当X趋近无穷时的极限。 人们在研究一些实际问题,如物体的冷却、细胞的繁殖、放射性元素的衰变时,都要研究 (1+1/x)^x X的X次方,当X趋近无穷时的极限。正是这种从无限变化中获得的有限,从两个相反方向发展(当X趋向正无穷大的时,上式的极限等于e=2.71828……,当X趋向负无穷大时候,上式的结果也等于e=2.71828……)得来的共同形式,充分体现了宇宙的形成、发展及衰亡的最本质的东西。 现代宇宙学表明,宇宙起源于“大爆炸”,而且目前还在膨胀,这种描述与十九世纪后半叶的两个伟大发现之一的熵定律,即热力学第二定律相吻合。熵定律指出,物质的演化总是朝着消灭信息、瓦解秩序的方向,逐渐由复杂到简单、由高级到低级不断退化的过程。退化的极限就是无序的平衡,即熵最大的状态,一种无为的死寂状态。这过程看起来像什么?只要我们看看天体照相中的旋涡星系的照片即不难理解。如果我们一定要找到亚里士多德所说的那种动力因,那么,可以把宇宙看成是由各个预先上紧的发条组织,或者干脆把整个宇宙看成是一个巨大的发条,历史不过是这种发条不断争取自由而放出能量的过程。 生命体的进化却与之有相反的特点,它与热力学第二定律描述的熵趋于极大不同,它使生命物质能避免趋向与环境衰退。任何生命都是耗散结构系统,它之所以能免于趋近最大的熵的死亡状态,就是因为生命体能通过吃、喝、呼吸等新陈代谢的过程从环境中不断吸取负熵。新陈代谢中本质的东西,乃是使有机体成功的消除了当它自身活着的时候不得不产生的全部熵。 “自然律”一方面体现了自然系统朝着一片混乱方向不断瓦解的崩溃过程(如元素的衰变),另一方面又显示了生命系统只有通过一种有序化过程才能维持自身稳定和促进自身的发展(如细胞繁殖)的本质。正是具有这种把有序和无序、生机与死寂寓于同一形式的特点,“自然律”才在美学上有重要价值。 如果荒僻不毛、浩瀚无际的大漠是“自然律”无序死寂的熵增状态,那么广阔无垠、生机盎然的草原是“自然律”有序而欣欣向荣的动态稳定结构。因此,大漠使人感到肃穆、苍茫,令人沉思,让人回想起生命历程的种种困顿和坎坷;而草原则使人兴奋、雀跃,让人感到生命的欢乐和幸福。 e=2.71828……是“自然律”的一种量的表达。“自然律”的形象表达是螺线。螺线的数学表达式通常有下面五种:(1)对数螺线;(2)阿基米德螺线;(3)连锁螺线;(4)双曲螺线;(5)回旋螺线。对数螺线在自然界中最为普遍存在,其它螺线也与对数螺线有一定的关系,不过目前我们仍未找到螺线的通式。对数螺线是1638年经笛卡尔引进的,后来瑞士数学家雅各·伯努利曾详细研究过它,发现对数螺线的渐屈线和渐伸线仍是对数螺线,极点在对数螺线各点的切线仍是对数螺线,等等。伯努利对这些有趣的性质惊叹不止,竟留下遗嘱要将对数螺线画在自己的墓碑上。
谁知道欧拉函数表
2-100欧拉函数表n φ(n)2 13 24 25 46 27 68 49 610 411 1012 413 1214 615 816 817 1618 619 1820 821 1222 1023 2224 825 2026 1227 1828 1229 2830 831 3032 1633 2034 1635 2436 1237 3638 1839 2440 1641 4042 1243 4244 2045 2446 2247 4648 1649 4250 2051 3252 2453 5254 1855 4056 2457 3658 2859 5860 1661 6062 3063 3664 3265 4866 2067 6668 3269 4470 2471 7072 2473 7274 3675 4076 3677 6078 2479 7880 3281 5482 4083 8284 2485 6486 4287 5688 4089 8890 2491 7292 4493 6094 4695 7296 3297 9698 4299 60100 40
欧拉函数
2-100欧拉函数表n φ(n)2 13 24 25 46 27 68 49 610 411 1012 413 1214 615 816 817 1618 619 1820 821 1222 1023 2224 825 2026 1227 1828 1229 2830 831 3032 1633 2034 1635 2436 1237 3638 1839 2440 1641 4042 1243 4244 2045 2446 2247 4648 1649 4250 2051 3252 2453 5254 1855 4056 2457 3658 2859 5860 1661 6062 3063 3664 3265 4866 2067 6668 3269 4470 2471 7072 2473 7274 3675 4076 3677 6078 2479 7880 3281 5482 4083 8284 2485 6486 4287 5688 4089 8890 2491 7292 4493 6094 4695 7296 3297 9698 4299 60100 40
欧拉函数φ(120)怎么算?
分解质因数:120=2^3*3*5欧拉函数:φ(120)=120*(1-1/2)(1-1/3)(1-1/5)=120*1/2*2/3*4/5=32小于或等于n的正整数中与n互质的数的数目(因此φ(1)=1)。设n为正整数,以 φ(n)表示不超过n且与n互素的正整数的个数,称为n的欧拉函数值φ:N→N,n→φ(n)称为欧拉函数。扩展资料:利用欧拉函数和它本身不同质因数的关系,用筛法计算出某个范围内所有数的欧拉函数值。如:ψ(10)=10×(1-1/2)×(1-1/5)=4;ψ(30)=30×(1-1/2)×(1-1/3)×(1-1/5)=8。
欧拉公式与三角函数是什么?
欧拉定理:e^(ix)=cosx+isinx。其中:e是自然对数的底,i是虚数单位。将公式里的x换成-x,得到:e^(-ix)=cosx-isinx,然后采用两式相加减的方法得到:sinx=[e^(ix)-e^(-ix)]/(2i),cosx=[e^(ix)+e^(-ix)]/2。积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
三角函数欧拉公式
在任何一个规则球面地图上,用R记区域个数,V记顶点个数,E记边界个数,则R+V-E=2,这就是欧拉定理,它于 1640年由 Descartes首先给出证明 ,后来 Euler(欧拉)于 1752年又独立地给出证明 ,我们称其为欧拉定理 ,在国外也有人称其 为 Descartes定理。
它是数学里最令人着迷的一个公式,它将数学里最重要的几个数字联系到了一起:两个超越数:自然对数的底e,圆周率π;两个单位:虚数单位i和自然数的单位1;以及被称为人类伟大发现之一的0。数学家们评价它是“上帝创造的公式”。