超声波检漏仪在行业中用途是什么?
压缩空气泄漏是工厂zui大的浪费之一,同时泄漏会形成系统压力降低,甚至形成执行机构动作缓慢或拒动;也会形成压缩机负荷增大,浪费10-15%的电能,缩短空压机电机寿命。因而,压缩空气系统均需按期(每年zui少3-4次)实行查看,及时发现泄露并维修。
而泄露气体无色无味,泄露发生的噪音在工厂环境下没办法听到,给人们检测带来困难。利用先进的可视化净化超声波检漏仪检测压缩空气泄露,将人没办法听到的高频超声转化为听得见的声音和看得见的图像,经过PC软件实行贮存和泄露分析。使泄露检测任务简便易行,即便再恶劣的工业环境下也能检测出来,将压缩室迅速变成利益中心,为您节约大量资金。
SDT340超声波检测仪充满电可连续使用多少小时?
任何气体通过泄漏孔都会产生涡流,会有超音波的波段的部份,超音波检测仪泄漏检测系统通过检测声音能够感应任何种类的气体泄漏。超声波检漏仪SDT340是一种在移动扫查过程中,传感器检测到泄漏信号后,将它们转换成人耳可以听到的音频信号,并在彩色液晶大屏幕上同时显示出来。超声波检漏仪是指利用超声波接受高频信号检测泄漏的一种仪器。
超声波检漏仪的原理
超声波检漏仪是一种在移动扫查过程中,传感器检测到泄漏信号后,将它们转换成人耳可以听到的音频信号,并在彩色液晶大屏幕上同时显示出来。
超音波检测仪泄漏检测系统不同于特定气体感应器受限于它所设计来感应的特定气体,而是以声音来检测。任何气体通过泄漏孔都会产生涡流,会有超音波的波段的部份,使得超音波检测仪泄漏检测系统能够感应任何种类的气体泄漏。用超音波检测仪泄漏检测系统扫瞄,可从耳机听到泄漏声或看到数位信号的变动。越接近泄漏点,越明显。
最近全球热销的超声波检测仪SDT200和SDT270,阀门内漏检测怎么样?
你好
超声波是无法被人耳所听到的声音,换句话说,高于20KHz 以上的频率是人耳所无法涉及的声音。正是因为超声波的这一特性于1975 年研发出第一台超声波检测仪。使用SDT超声波检测仪检查液压回路故障来找出内部泄漏快速而轻松。SDT超声波检测仪“接触模式”沿回路采集样本读数。检测人员能清楚地定义流动方向,更重要的是故障源,即使在高噪声区域。液压柱塞上穿过密封的内部泄漏在油中产生微小气泡,随着它们从压力侧到达无压力侧,它们依次“爆裂”。这些小爆炸产生超声波能量,很容易被SDT270超声波检测仪的检测到。并且通过调节检测器的频率来消除干扰的超声波。
阀门是锅炉系统中不可缺少的流体控制的设备,在锅炉事故中,有相当部分是由阀门所引发的故障。阀门内漏,导致产生汽水损失,锅炉补给水量就要增加,相对所消耗的煤量也要增多,同时阀门内漏腐蚀将使阀门寿命降低,损坏过快,影响公司的经济效益,所以利用超声波检漏仪SDT270快速判断阀门是否内漏,可尽早做好预防,减少损失。
阀门内漏的检测方法
将仪器贴靠在阀门上游管线(如下图A处)测定系统环境超声值。使用SDT270超声波检测仪主机上的向上和向下箭头按钮调整仪器灵敏度,确保液晶显示屏上的箭头指针隐去,以测定系统背景信号,同时注意显示屏上的dB读数。
将仪器贴靠阀门下游管线(如上图B处)倾听泄漏信号。如果显示屏上的dB读数小于或等于A点读数,说明阀门没有泄漏现象;如果B点的dB读数相对于A点有所增加,说明阀门泄漏最后,将检测仪贴靠B点之下的某处下游管线,进行泄漏点确认。如果阀门泄漏,图中C点的dB读数应小于B点读数;如果C点的dB读数大于B点读数,泄漏位置应该在管线的下游某处。
如果阀门处于关闭状态,则几乎听不到声响。如果阀门处于打开状态,可以听到连续或间断的流动声音,这是介质流过阀体时发出的声音。水处理厂可以参照SDT超声波检测仪的数字读数进行阀门检修后的校准和设置工作。水处理设备的闸式阀的读数一般低于5dBμV。
满意请采纳
什么是桩基检测?
一说到桩基检测,相关建筑人士还是比较陌生的,什么是桩基检测?桩基检测常用办法有哪些?以下是中达咨询为建筑人士整理相关桩基检测基本资料,具体内容如下:为了便于建筑企业施工人员的了解桩基检测的相关内容,中达咨询收集梳理相关知识点,具体内容如下:首先我们先了解一下什么是桩基检测?地基结构检测研究院包括基坑监测,桩基检测等等地基基础工程。 具体桩基检测(高应变、低应变动测以及静载荷试验),基坑监测,基坑支护等等。根据《建筑基检测技术规范》(JGJ106-2003),桩基检测的主要方法有静载试验、钻芯法、低应变法、高应变法、声波透射法等几种。其中桩基超声波检测法的内容如下:桩基超声波是检测桩身砼的密实程度以及桩身完整程度。 原理很简单,就是用超声波(发射管)穿过桩身砼断面,吸收管吸收超声波,根据两者之间的距离(人工用尺量桩头预埋的管之间距离),用声波走的时间(仪器直接绘在纸上)来判断砼的密实程度。如果桩身砼很理想,那么画出来的波形基本都一样;如果在桩身某处有不密实(或者砼中夹有泥沙),那么超声波测量到此处时,时间会缩短,画出来的波形就很窄,测量人员马上就可以判断此处砼有问题。更多关于标书代写制作,提升中标率,点击底部客服免费咨询。
桩基检测项目有哪些
1、对预制桩(包括打入式预制桩及静力压入式预制桩)和钢桩,应进行桩顶标高、桩位偏差、打入(或静压)深度、停锤标准、桩端持力层等的检测。2、对灌注桩,应进行桩顶标高、桩位偏差、桩身质量、桩端持力层等的检测。3、人工挖孔桩,应进行开挖尺寸、有无虚土、岩土条件、桩端持力层检验。单柱单桩的大直径嵌岩桩,应视岩性检验桩底下3d或5m深度范围内有无空洞、破碎带、软弱夹层等不良地质作用。必要时应进行桩端持力层岩基原位荷载试验和桩侧摩阻力试验,试验桩数不宜少于同条件下总桩的1%,且不得少于3根。
怎么检测到超声波,有什么仪器可以检测到超声波存在吗
超声波清洗机作为工业重要清洗设备,其清洗效率和清洗效果成为人们重点关注之事。如果工件清洗效果不佳,将影响工件的二次加工,因此,人们需研究出可监控超声波清洗机清洗效果的方法,确保工件清洗效果良好。根据我国专家的研究,可采用毛玻璃片法、铝箔测试法和超声能量瓶检测法检测工件的清洗效果。 在运用铝箔测试法监测超声波清洗机清洗效果时发现,10μm的铝箔纸在测试时受损较为严重,无法判断清洗效果,而其他厚度的铝箔测试的合格率差距相对较小。通过监测试验发现,厚度超过20μm的铝箔纸作为检测工具时,清洗效果更加明显,监测起来也更加方便。运用毛玻璃片或超声能量瓶监测超声波清洗机清洗效果时发现,监测物品大小并不影响监测效果,但放置的位置会有一定影响。为了确保监测的准确性,需要分别根据清洗时间、清洗温度和清洗频率设计不同的试验组,且每组的试验数量都达到相关要求。人们同时使用三种方法监测超声波清洗机清洗效果时发现,铝箔测试法和超声能量瓶检测法的监测合格率明显低于毛玻璃片法,监测的结果更为准确。由此可见,铝箔测试法和超声能量瓶检测法更加适合于监测超声波清洗机的清洗效果,如果条件不允许,人们再退而求其次地选择毛玻璃片法,并且将毛玻璃片竖放于清洗机的四角位置,提高监测的难度。
超声波检测的原理
超声波检测是利用材料及其缺陷的声学性能差异对超声波传播波形反射情况和穿透时间的能量变化来检验材料内部缺陷的无损检测方法。脉冲反射法在垂直探伤时用纵波,在斜射探伤时用横波。脉冲反射法有纵波探伤和横波探伤。在超声波仪器示波屏上,以横坐标代表声波的传播时间,以纵坐标表示回波信号幅度。对于同一均匀介质,脉冲波的传播时间与声程成正比。因此可由缺陷回波信号的出现判断缺陷的存在;又可由回波信号出现的位置来确定缺陷距探测面的距离,实现缺陷定位;通过回波幅度来判断缺陷的当量大小 。扩展资料:超声波检测优点:1、适用于金属、非金属和复合材料等多种制件的无损检测2、缺陷定位较准确3、对面积型缺陷的检出率较高4、灵敏度高,可检测试件内部尺寸很小的缺陷5、对人体及环境无害6、不破坏样品参考资料来源:百度百科-超声波检测
泄漏检测方法有哪些
三、泄漏检测的一般方法
1.查清管道位置 采用管道探测仪查清管网的确切位置,这是泄漏检测的前提。由于天然气“乱窜”的特点,往往会在根本没有管道的地方发现它的踪影。如果我们据此来确定漏点位置,就会闹出很多笑话。因而,搞清管道的位置,并引导我们在地面沿着管道路径进行泄漏检测,就可避免因燃气“乱窜”而造成漏点的错误判断。 通常情况下,城市地下埋设的管网都较为密集,管道之间不可避免地会发生信号传递和干扰,这显然就增加了将目标管道和非目标管道区别开来的难度,同时,对目标管道的深度测量也难以做到精确、可靠。这就会大大增加对漏点准确定位时的危险性。因而,对管道探测仪的选择,仅仅要求较高的灵敏度是远远不够的,它优良的抗干扰性也必需受到足够的重视。日本富士公司生产的PL一960金属管线探测仪因其内部的双水平天钱的差动式结构,使其在探测实践中管道信号感应面相对狭窄,形成信号波峰瘦峻、高耸的特征,可有效地在管网密集地段准确地捕捉到目标管道的信号。
2.发现异常点 采用手推式埋地管道泄漏检测仪,在地面沿管路推行,仪器的采样吸气口与地面始终保持接触状态。这样的方式,既可避免在没有管道的地方去进行无意义的检测,同时,因为吸气口紧贴地面,燃气一旦窜出地面还未及扩散就已被吸入,即使是微小的泄漏也会被检出。在实验中检查出的漏点有很多是用肉眼看不出来的,只有当洗衣粉水浇上去,慢慢地才会冒出一个小泡。
在泄漏检测仪的选择上要注意三点:
(1)高灵敏度。我们推荐多个量程中包含lOOppm档的检测仪。许多燃气公司就将已有的报警仪(量程为0~100%LEL,如果检测对象是天然气,量程即为500(~ppm或0~5%vol当成检漏仪来用。例如,在某次查漏演示中,使用日本新宇宙公司生产的XP一707手推式检漏仪查出一个异常点,浓度显示为150ppm。甲方单位很快拿来一台也是日本新宇宙公司生产的检测仪,型号是XP一311A(量程为0~100%LEL),进行测试,结果指针纹丝不动,并据此认为没有泄漏。但后来的开挖结果是一个微漏。殊不知,100ppm和50000ppm在灵敏度上相差500倍。
(2)采气孔必需是贴地的。
(3)采用内置泵吸式。
3.漏点 发现异常点后就要在异常点上方的地面打出探孔,目的是导引泄漏出的燃气向地面自由、垂直上升,为确认漏点的准确位置提供客观依据。打孔前必需再次对管道进行精确定位,以保证管道的安全。探孔的数量至少在三个以上,探孔的深度应尽可能接近或超过管道的埋深(考虑到漏点有可能是在管道的下方)。根据不同的地面情况,采用多种地面钻孔设备:一对水泥、沥青等坚硬密实地面进行穿透性钻孔的较大功率电锤(建议燃气公司在有管道的混凝土路面钻出永久性探孔,定期在探孔口侦测可能出现的泄漏);对土壤、砾石层地:面进行深部钻孔的钻洞棒。钻洞棒的长度会影响钻孔的深度,一般况下,北方城市可采用能钻1.5m深的钻洞棒;南方城市则选择能钻lm深的钻洞棒就行了。钻洞棒的选择既要有相当的钢性,以针对干燥密实的老土层;同时,为对付土层中较大的砾石和片石,钻洞棒还要有能够自动转向绕过砾石或片石的柔性。探孔打好后,就要逐个测量各探孔的气体浓度。这时的探孔因深及管道,泄出的气体会顺着探孔窜出地面,因而,通过对各探孔所测浓度大小的比较,即可判断漏点的准确位置。对于较大漏点的浓度测量(测试浓度超过5%、,01),有必要采用量程为0~100%vol的高浓度的可燃气体检测仪。根据经验,80%以上漏点的上方探孔所测浓度都超过了5%vol。13本新-T-宙公司有一款XP一314的检测仪(测量范围:0一100%v01),其原来的设计目的,是对新安装或维修后的管道进行空气置换时监测可燃气的浓度,以此来判断置换工作是否完成。
各种泄漏测试方法和泄漏测试仪器都有哪些?
气泡法:在密闭的工件腔体内通入一定压力的气体,将工件沉放入水中(或者其它液体中),观察是否有气泡溢出。或者在工件表面涂肥皂水,观察是否有气泡产
生。(落后,污染产品,效率低下,无法自动化)
压力降法:在密闭的工件腔体内通入一定压力的气体,静止一段时间,再次检测气体的压力,观察压力是否有降低,根据压力的变化来判断是否有泄漏。(落后,效
率极其低下,灵敏度最低)
压力差法:原理与压力降法类似,但方法更好。在密闭的工件腔体内通入一定压力的气体,同时在一个标准罐体内通入同样压力的气体,静止一段时间,观察标准罐
体内的压力与工件内的压力差。这个比压力降法的精度要高,它可以排除环境温度变化带来的压力偏差。但市面上现有的压差表分辨率只有
100~1000pa(灵敏度有所提高,效率也不高)
泄漏收集法:适合阀类产品,一侧(腔体)加压,另一侧(腔体)收集泄漏气体且尽可能减小腔体体积,以增加单位泄漏量下的压力的变化速度。效率一般。
超声波探测法:原理是泄漏点会产生超声波,使用超声波探测仪即可找出泄漏点。这个适用于寻找气体管路泄漏点的检测。(精度很差,最小只能探测到3公斤压力
下100um孔径的泄漏,这时的泄漏速度有100000立方毫米/秒以上)
卤素气体检漏法:将一定压力的卤素气体通入密闭的工件腔体中,在工件外部用卤素探测仪检测是否有卤素气体泄漏。(精度尚可,能探测到的最小泄漏速度大约为
10~20立方毫米/秒,效率一般,要在所有表面扫描探测,)
氢氦气检漏法:原理与卤素气体检漏法类似,不同的是使用分子量更小,运动速度更快的氢氦气体,所以灵敏度更高。在20℃标准大气压下,水分子的运动速率约
1~2m/s,氧气分子运动速率约460m/s,氢分子运动速率约1600m/s。将一定压力的氦气,通入密闭的工件腔体中,然后使用氦质谱仪检测工件的
腔体周围是否有氢氦元素泄漏,这个是目前高精度检漏所用的方法,比起前面几个方法来说,精度提高了很多,当然,成本也很高。(灵敏度最高,在真空模式下,
每秒泄漏超过1亿个气体分子时,就能探测到,在标准大气压下约5立方微米/秒,
或10 ^-13立方米*帕/秒,若在大气模式下,灵敏度减少4个数量级,约0.05立方毫米/秒。不仅设备昂贵,而且需要消耗昂贵的氦气,要配置真空泵等,效率尚可,使用时要在所有表面扫描探测)