DNA损伤与修复
突变与癌症的发生均包含细胞DNA损伤过程。人类细胞中的DNA每天都会由于外部(外源)和内部(内源)的代谢进程而遭受成千上百次损伤。细胞基因组的改变可能导致DNA转录过程出现错误,进而通过翻译过程影响到信号转导和细胞功能必需的蛋白质。如果有丝分裂之前这些基因组突变尚未完成修复,则还会进一步遗传给子代细胞。一旦细胞丧失了有效修复DNA损伤的能力,就可能发生三种反应:细胞衰老、细胞凋亡和细胞癌变( 图1 )。细胞可能会衰老,即进入不可逆的休眠状态。2005年,多家实验室报道癌症细胞在体内和体外均会发生衰老现象,停止有丝分裂,阻止细胞进一步演化。细胞可能发生凋亡。DNA损伤达到一定程度,就可能触发一条凋亡信号转导通路,迫使细胞进入程序性细胞死亡过程。细胞可能会恶变,即出现永生化的性质并开始不受控制地分裂。
为了代偿细胞内可能发生的不同程度和类型的DNA损伤,细胞发展出多种不同的修复机制,包括错配、碱基切除,以及核苷酸切除修复机制。不同修复机制之间很少出现冗余处理。如果出现损伤过度,细胞就不再耗费能量来有效修复损伤之处,而很可能发展为凋亡或衰老。细胞能够有效修复的比例与细胞类型和细胞年龄等因素息息相关。
多年来,外源性损伤一直被认为是致癌DNA突变的首要来源。不过,Jackson与Loeb提出内源性DNA损伤也可能是致癌突变的重要来源 5 。来自环境与细胞的诱因均可导致相似类别的DNA损伤。
DNA会受到物理与化学诱变剂的影响。物理诱变剂主要源自各种放射源,其中包括太阳的紫外线(200-300 nm波长)。紫外线会生成共价键,将DNA链中相邻的嘧啶(胞嘧啶与胸腺嘧啶)碱基交联起来。电离射线(X射线)会在细胞中产生自由基,这些自由基会制造活性氧(ROS)并导致双螺旋中的单链或双链断裂,从而引发DNA突变。化学诱变剂能够攻击DNA碱基上共价结合的烷基基团;能够促使DNA碱基发生甲基化或乙基化反应的氮芥类化合物即是DNA烷化剂的一个实例。前致癌物为一类化学惰性的前体物质,能够通过代谢反应转化为具有高度活性的致癌剂。这些致癌剂能够与DNA发生反应,形成DNA络合物,即附着在DNA之上的化学实体。苯并芘为一类多芳烃的杂环类物质,本身并非致癌物。但它可通过由细胞色素P450酶介导的两个连续氧化反应,生成苯并芘二醇环氧化物(BPDE),后者则是一种致癌代谢物,能够介导共价DNA络合物的形成( 图2 )。
内源代谢和生化反应也可能造成DNA损伤,但人们对其中的一些机制还知之甚少 6 。水解反应可能部分或彻底切割DNA链上的核苷酸碱基。连接嘌呤碱基(腺嘌呤或鸟嘌呤)与脱氧核糖磷酸链的化学键可能在脱嘌呤过程中自发断裂。哺乳动物细胞中每天发生约10000次脱嘌呤活动 7 。脱嘧啶活动(在胸腺嘧啶或胞嘧啶的位置丢失嘧啶类碱基)也可能发生,但频率要比脱嘌呤活动低20~100倍。
细胞中也会发生脱氨作用,即腺嘌呤、鸟嘌呤与胞嘧啶环上的氨基丢失,分别形成次黄嘌呤、黄嘌呤与尿嘧啶。DNA修复酶能够识别和纠正这些非天然的碱基,但未被纠正的尿嘧啶碱基在后续的DNA复制过程中可能会被误读为胸腺嘧啶,随之形成C→T点突变。
在细胞内,与S-腺苷甲硫氨酸(SAM)的反应可以介导DNA甲基化。SAM是一类细胞内代谢中间体,包含一个具有高度活性的甲基基团。在哺乳动物细胞中,甲基化发生在胞嘧啶碱基的胞嘧啶环5号位置上,进而形成了一个鸟嘌呤碱基,即序列CpG。突变错误的一个重要来源是甲基化产物5-甲基胞嘧啶的自发脱氨基作用。氨基丢失导致形成胸腺嘧啶碱基,从而无法被DNA修复酶识别为异常碱基。这一碱基置换作用在DNA复制过程中被保留,形成C→T点突变(参见 图3 )。
正常的代谢进程会生成活性氧(ROS),后者会通过氧化作用修饰DNA碱基。嘌呤与嘧啶类碱基均会受到氧化作用的影响,最为常见的突变是鸟嘌呤被氧化为8-氧代-7,8-二氢鸟嘌呤,形成8-氧代脱氧鸟苷(8-oxo-dG)。8-oxo-dG能够与脱氧腺苷而非预期的脱氧胞苷相配对。如果这一错误未被错配修复酶识别并纠正,则随后复制出的DNA产物就会包含一个C→A点突变。ROS也可能会介导脱嘌呤、脱嘧啶作用以及DNA单/双链的断裂。
在细胞周期S期,DNA复制过程中还可能引入其他类型的基因组突变。复制模板DNA的聚合酶有少量但不可忽视的错误率,会将错误碱基按照沃森-克里克配对原则整合进合成链中,与模板DNA相配。化学上发生改变的核苷酸前体也可能被聚合酶整合进入DNA合成链,代替正常碱基。此外,聚合酶在复制含有大量重复核苷酸或重复序列(微卫星区域)的DNA区段时,容易发生“打滑(stuttering)”现象。这一“打滑”的酶学现象是由于链之间发生滑动所致,此时模板与复制链之间可能出现的滑动会导致两者之间难于对准。其结果是聚合酶不能准确插入模板DNA指定数量的核苷酸,导致子链中的核苷酸过多或过少。
单链与双链DNA可能发生断裂。单链断裂可能由DNA脱氧核糖磷酸酯链上的脱氧核糖基团损伤引起。断裂也可能发生在碱基切除修复途径中AP-内切酶1去除脱氧核糖磷酸基团之后的一个中间步骤 8 。发生单链断裂后,核苷酸碱基与脱氧核糖骨架都会从DNA结构中丢失。双链断裂经常出现在细胞通过S期传代过程中,此时DNA发生解螺旋并成为复制的模板,因此更容易发生断裂。
DNA修复机制
当细胞有能力进入凋亡或衰老状态时,这些细胞活动都可视为细胞做出的最后调整。对于任一种类的DNA损伤而言,细胞都进化出特定的方法来针对性地修复,或清除损伤类化合物。
O6-甲基化鸟嘌呤DNA甲基转移酶(MGMT;DNA烷基转移酶)能够从DNA的鸟嘌呤碱基结构上剪切甲基和乙基加合物。这一反应并非催化(酶学)反应,而是化学计量(化学的)反应,每去除一个加合物,就消耗一个MGMT分子。经过基因工程改造而过表达MGMT的细胞对于癌症具有更强的耐受性,这很可能是因为它们能够消除大量的烷化损伤。Niture等人最近的一篇研究表明,使用半胱氨酸/谷胱甘肽促进药物与天然抗氧化剂可提升MGMT的表达水平 9 。
聚合酶-δ等含有校正活性的DNA聚合酶主要参与复制易错性修复。当检测到错误时,这些酶会暂停DNA的复制过程,回头去除DNA子链上的核苷酸,直至错误掺入的核苷酸消除后,再重新开始正向的复制过程。对Pold1基因双拷贝点突变小鼠的研究数据表明,相对于野生型或单拷贝突变小鼠,此类小鼠的DNA聚合酶-δ校准活性缺失,且上皮性肿瘤发病几率明显上升 10 。
错配切除修复(MMR)酶能够进一步纠正复制过程中DNA聚合酶校正活性未检测到的错误。MMR酶能够切除子链DNA上的错误核苷酸,并将母链DNA作为正确的模板,通过W-C配对来修复该链 11 。这一修复过程对于复制微卫星区域时所产生的错误至关重要,因为DNA聚合酶的校正活性不会检测出此类错误。在有限程度内,MMR酶类还能够纠正由DNA氧化或烷化所导致的多种碱基对异常。这些突变包括含有O6甲基化鸟嘌呤与8氧鸟嘌呤的修饰碱基对,以及致癌剂和顺式铂氨加合物 12,13 。人类错配切割修复基因MSH2和MLH1的突变与遗传性非息肉病性结直肠癌(HNPCC)综合症有关 14 。
碱基切除修复与核苷酸切除修复
碱基切除修复(BER)过程涉及多种可切割和替换单一损伤核苷酸碱基的酶。由内源氧化和水解作用所引发的不良碱基修饰主要通过BER酶进行修复。DNA糖基化酶能够切割核苷酸碱基与核糖之间的化学键,释放完整的DNA核糖磷酸链,不过这一过程会形成一个无嘌呤或无嘧啶(AP)位点。8-氧鸟嘌呤DNA糖基化酶I(Ogg1)能够去除7,8-二氢-8-氧鸟嘌呤(8-oxoG),后者是一种由活性氧介导生成的碱基突变。人类OGG1基因的多态性与肺癌和前列腺癌等多种癌症患病风险相关。尿嘧啶DNA糖基化酶(另一种BER酶)能够切除胞嘧啶脱氨作用的尿嘧啶产物,防止之后形成C→T点突变 15 。N-甲基嘌呤DNA糖基化酶(MPG)能够去除大量发生了修饰的嘌呤碱基 16 。
由BER酶介导生成以及源自脱嘧啶和脱嘌呤作用的DNA AP位点,可被AP-内切酶1(APE1)修复。APE1能够切割AP位点上的磷酸二酯链的5'位置。这样DNA链就出现了一个3'-羟基基团与一个5'-碱性脱氧核糖磷酸基团。DNA聚合酶β(Polβ)基于相应的W-C配对原则向DNA链中插入正确的核苷酸,并通过其相应的AP水解活性去除脱氧核糖磷酸基团。X射线修复交叉互补蛋白1(XRCC1)的存在对与III型DNA连接酶(LIG3)形成异源二聚体是必需的。支架蛋白XRCC1含有一个Polβ的非活性结合位点,从而将Polβ与LIG3酶一同带到修复位点 17 。与XRCC1和Polβ相互作用的Poly(ADP-核糖)聚合酶(PARP-1)是BER途径的必要组成部分 18,19 。修复的最后步骤由LIG3来完成,它将替代核苷酸的脱氧核糖基团与脱氧核糖磷酸骨架连接起来。这一途径被称为“短补丁BER” 20 。
另一条称为“长补丁BER”的替代途径能够置换最短2nt的核苷酸链。有报道表明该途径能置换10-12nt长度的核苷酸链 21,22 。长补丁BER需要增殖细胞核抗原(PCNA),后者能够作为重组酶的支架蛋白 23 。其他类型的DNA聚合酶(可能包括Polδ和Polε 24 )用于形成寡核苷酸瓣状结构侧翼。已有的核苷酸序列被瓣状核酸内切酶1(FEN1)所移除。寡核苷酸随后由DNA连接酶I(LIG1)连接至DNA上,填补缺口并完成修复工作 17 。有关短补丁与长补丁BER途径选择的确切细胞学机制仍处于研究阶段(参见 图4 ) 25 。
尽管BER可通过长补丁途径替代多个核苷酸,但短补丁与长补丁BER都是由单核苷酸损伤引发的,从而最大程度减少对DNA双螺旋结构的影响。核苷酸切除修复(NER)能够修复含至少两个碱基的核苷酸链损伤的,进而造成DNA结构的变形。除了修复较大DNA加合物和紫外线等引起的一系列外源性损伤外, NER还用于修复单链断裂 26 。 NER途径也可能用于修复氧化应激所致的损伤 27 。在哺乳动物细胞中,20多种蛋白参与了NER途径,其中包括XPA、XPC-hHR23B、复制蛋白A(RPA)、转录因子TFIIH、XPB与XPD DNA解旋酶、ERCC1-XPF和XPG、Polδ、Polε、PCNA和复制因子C 28 。在非小细胞肺癌细胞中,切除修复交叉互补(ERCC1)基因的过表达与细胞的顺铂耐受性有关 29 ,ERCC1基因过表达的细胞也具有增强的DNA修复能力 30 。全基因组NER(GGR)能够修复整个基因组内发生的损伤,而特异性NER途径“转录偶联修复(TCR)”能够在活性RNA聚合酶进行转录的过程中对基因进行修复。 31
DNA分子中的双链断裂会导致基因组序列丢失和重排。此类断裂可以通过非同源末端连接(NHEJ)或同源重组(HR),也称重组修复或模板辅助修复来进行修复。
当细胞处于S/G2阶段后期时,HR途径激活,模板被复制。这一机制基于与受损DNA区域通过着丝粒相连着一条相同或近乎相同的序列,该序列将作为修复模板。HR机制修复的双链断裂通常出现在复制机器试图通过一个单链断裂或非配对的位点,此时复制叉结构会出现折叠。
在细胞循环的其他节点,当姊妹染色单体不能作为HR模板时,细胞也可能启动非同源末端连接(NHEJ)机制。与HR途径不同,当这些断裂位点出现时,没有相应的模板链可供参考,细胞不再复制断裂的DNA区域。在NHEJ途径中,Ku异源二聚体蛋白位于两条断裂DNA链的末端位置,在没有模板指引的条件下对其进行修复,因此可能会丢失序列信息。多种酶类参与了重连过程,其中包括连接酶IV,XRCC4与DNA依赖的蛋白激酶(DNA-PK) 32,33 。NHEJ具有内在的致突变性,因为这一机制有赖于两条需要连接的DNA片段的单链尾之间的偶然性配对(称为微同源,microhomologies)(参见 图5 )。在高等真核生物中,DNA-PK对于NHEJ修复是必需的,无论是主要机制还是替代性的备选机制(D-NHEJ)均是如此 34 。
未来的应用
虽然DNA损伤是癌症细胞发生发展的关键因素,持续性损伤却是临床癌症治疗的组成部分,用于迫使恶性细胞进入凋亡或衰老进程。此种疗法中,博来霉素、丝裂霉素、顺铂等诸多化疗药物都很有效,因为它们能够让比周围组织复制更快的癌症细胞发生进一步的DNA损伤。细胞DNA修复机制是一把双刃剑:一方面它可以减少致癌突变从而帮助保持基因组的完整性;而在恶性细胞中,同样的机制却让细胞幸免于更多的DNA损伤以及持续发生不可控的生长。为了阻断癌症细胞中的这一存活机制,人们正尝试使用特定的DNA修复酶(包括MGMT、PARP和DNA-PK)的抑制剂来开展临床实验 35-38 。
基因修复技术是真是假
基因修复技术是真的科学技术。 基因修复技术是指DNA修复(DNArepairing),是细胞对DNA受损伤后的一种反应,可使DNA结构恢复原样,重新能执行它原来的功能。【摘要】基因修复技术是真是假【提问】基因修复技术是真的科学技术。 基因修复技术是指DNA修复(DNArepairing),是细胞对DNA受损伤后的一种反应,可使DNA结构恢复原样,重新能执行它原来的功能。【回答】基因修补技术可修补单一突变基因,治疗某些因基因突变而引起的疾病。【回答】DNA修复(DNArepairing)是细胞对DNA受损伤后的一种反应,这种反应可能使DNA结构恢复原样,重新能执行它原来的功能;但有时并非能完全消除DNA的损伤,只是使细胞能够耐受这DNA的损伤而能继续生存。【回答】【回答】
DNA损伤修复方式包括( )。
【答案】:A、B、C、D
DNA损伤修复方式包括:①直接修复:嘧啶二聚体的直接修复、烷基化碱基的直接修复、无嘌呤位点的直接修复、单链断裂的直接修复。②切除修复:碱基切除修复、核苷酸切除修复、碱基错配修复。③重组修复:同源重组修复、非同源末端连接的重组修复。④其他修复方式:重组跨越损伤修复、合成跨越损伤修复、SOS修复。
DNA修复对生物体有什么意义?比较切除修复和重组修复。
DNA修复(DNA
repairing)是细胞对DNA受损伤后的一种反应,这种反应可能使DNA结构恢复原样,重新能执行它原来的功能;但有时并非能完全消除DNA的损伤,只是使细胞能够耐受这DNA的损伤而能继续生存。
切除修复和重组修复的区别在于,切除修复完全消除了DNA损伤,而重组修复不能完全去除损伤,损伤的DNA段落仍然保留在亲代DNA链上。
切除修复
(excission
repairing):也称核苷酸外切修复,这是一种取代紫外线等辐射物质所造成的损伤部位的暗修复系统。此系统是在几种酶的协同作用下,先在损伤的任一端打开磷酸二酯键,然后外切掉一段寡核苷酸;留下的缺口由修复性合成来填补,再有连接酶将其连接起来。
重组修复①受损伤的DNA链复制时,产生的子代DNA在损伤的对应部位出现缺口。②完整的另一条母链DNA与有缺口的子链DNA进行重组交换,将母链DNA上相应的片段填补子链缺口处,而母链DNA出现缺口。③以另一条子链DNA为模板,经DNA聚合酶催化合成一新DNA片段填补母链DNA的缺口,最后由DNA连接酶连接,完成修补。重组修复不能完全去除损伤,损伤的DNA段落仍然保留在亲代DNA链上,只是重组修复后合成的DNA分子是不带有损伤的,但经多次复制后,损伤就被“冲淡”了,在子代细胞中只有一个细胞是带有损伤DNA的。
基因修复技术
人类细胞基因治疗的临床实验已经开始。 进行基因治疗必须具备下列条件:①选择适当的疾病,并对其发病机理及相应基因的结构功能了解清楚;②纠正该病的基因已被克隆,并了解该基因表达与调控的机制与条件;③该基因具有适宜的受体细胞并能在体外有效表达;④具有安全有效的转移载体和方法,以及可供利用的动物模型。已对若干人类单基因遗传病和肿瘤开展了临床的基因治疗。 1991年,我国科学家进行了世界上首例血友病B的基因治疗临床试验,目前已有4名血友病患者接受了基因治疗,治疗后体内IX因子浓度上升,出血症状减轻,取得了安全有效的治疗效果。随后,我国科学家利用胸腺激酶基因治疗恶性脑胶质瘤基因治疗方案获准进入1期临床试验,初步的观察表明,生存期超过1年以上者占55%,其中 1例已超过三年半,至今仍未见肿瘤复发。此外,采用血管内皮生长因子基因治疗外周梗塞性下肢血管病基因治疗方案也已获准进入临床试验。目前,我国已有6个基因治疗方案进入或即将进入临床试验。 总的来看,我国基因治疗产业比美国落后了约4年,正处于成长阶段,绝大部分还处于实验室研究阶段,仅有大约5个项目通过审批进入特批临床试验或I、Ⅱ期临床试验。
基因技术与长生不老:通过基因技术能让人长生不老吗
不能。基因(遗传因子)是遗传的物质基础,是DNA或RNA分子上具有遗传信息的特定核苷酸序列。基因通过复制把遗传信息传递给下一代,使后代出现与亲代相似的性状。人类大约有几万个基因,储存着生命孕育、生长、凋亡过程的全部信息,通过复制、表达、修复,完成生命繁衍、细胞分裂和蛋白质合成等重要生理过程。生物体的生、长、病、老、死等一切生命现象都与基因有关。它也是决定人体健康的内在因素。
哪些因素能引起dna损伤?生物机体如何修复dna的损伤?这些损伤修复机制对
一、定义:DNA损伤是复制过程中发生的DNA核苷酸序列永久性改变,并导致遗传特征改变的现象。情况分为:substitutation (替换)deletion (删除)insertion (插入)exon skipping (外显子跳跃)。
二、原因:
1.DNA分子的自发损伤:DNA复制过程中发生的错配、碱基的脱氨基作用、碱基的丢失(脱嘌呤与脱嘧啶)、活性氧引起的碱基修饰与链断裂
2.物理因素:紫外线、电离辐射、X射线
3.特殊物质引起的损伤:碱基类似物、修饰剂、烷基剂、嵌合剂、黄曲霉素
三、修复:
1、光复活:又称光逆转。这是在可见光(波长3000~6000埃)照射下由光复活酶识别并作用于二聚体,利用光所提供的能量使环丁酰环打开而完成的修复过程 (图2)。光复活酶已在细菌、酵母菌、原生动物、藻类、蛙、鸟类、哺乳动物中的有袋类和高等哺乳类及人类的淋巴细胞和皮肤成纤维细胞中发现。这种修复功能虽然普遍存在,但主要是低等生物的一种修复方式,随着生物的进化,它所起的作用也随之削弱。
光复活过程并不是PR酶吸收可见光,而是PR酶先与DNA链上的胸腺嘧啶二聚体结合成复合物,这种复合物以某种方式吸收可见光,并利用光能切断胸腺嘧啶二聚体间的C-C键,胸腺嘧啶二聚体变成单体,PR酶就从DNA上解离下来。
2、切除修复:又称切补修复。最初在大肠杆菌中发现,包括一系列复杂的酶促DNA修补复制过程,主要有以下几个阶段:核酸内切酶识别DNA损伤部位,并在5'端作一切口,再在外切酶的作用下从5'端到3'端方向切除损伤;然后在 DNA多聚酶的作用下以损伤处相对应的互补链为模板合成新的 DNA单链片断以填补切除后留下的空隙;最后再在连接酶的作用下将新合成的单链片断与原有的单链以磷酸二酯链相接而完成修复过程。
3、重组修复:重组修复从 DNA分子的半保留复制开始,在嘧啶二聚体相对应的位置上因复制不能正常进行而出现空缺,在大肠杆菌中已经证实这一DNA损伤诱导产生了重组蛋白,在重组蛋白的作用下母链和子链发生重组,重组后原来母链中的缺口可以通过DNA多聚酶的作用,以对侧子链为模板合成单链DNA片断来填补,最后也同样地在连接酶的作用下以磷酸二脂键连接新旧链而完成修复过程。重组修复也是啮齿动物主要的修复方式。重组修复与切除修复的最大区别在于前者不须立即从亲代的DNA分子中去除受损伤的部分,却能保证DNA复制继续进行。原母链中遗留的损伤部分,可以在下一个细胞周期中再以切除修复方式去完成修复。
4、SOS修复系统:是SOS反应的一种功能。SOS反应是DNA受到损伤或脱氧核糖核酸的复制受阻时的一种诱导反应。在大肠杆菌中,这种反应由recA-lexA系统调控。正常情况下处于不活动状态。当有诱导信号如 DNA损伤或复制受阻形成暴露的单链时,recA蛋白的蛋白酶活力就会被激活,分解阻遏物lexA蛋白,使SOS反应有关的基因去阻遏而先后开放,产生一系列细胞效应。引起SOS反应的信号消除后,recA蛋白的蛋白酶活力丧失,lexA蛋白又重新发挥阻遏作用。
基因修复是谁提出的?
基因工程genetic engineering
基因工程是以分子遗传学为理论基础, 以分子生物学和微生物学的现代方法为手段, 将不同来源的基因(DNA分子),按预先设计的蓝图, 在体外构建杂种DNA分子, 然后导入活细胞, 以改变生物原有的遗传特性、获得新品种、 生产新产品。基因工程技术为基因的结构和功能的研究提供了有力的手段。
什么是基因工程?【简介】
基因工程是生物工程的一个重要分支,它和细胞工程、酶工程、蛋白质工程和微生物工程共同组成了生物工程。 所谓基因工程(genetic engineering)是在分子水平上对基因进行操作的复杂技术,是将外源基因通过体外重组后导入受体细胞内,使这个基因能在受体细胞内复制、转录、翻译表达的操作。它是用人为的方法将所需要的某一供体生物的遗传物质——DNA大分子提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源物质在其中“安家落户”,进行正常的复制和表达,从而获得新物种的一种崭新技术。
基因工程是在分子生物学和分子遗传学综合发展基础上于本世纪70年代诞生的一门崭新的生物技术科学。一般来说,基因工程是指在基因水平上的遗传工程,它是用人为方法将所需要的某一供体生物的遗传物质--DNA大分子提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源遗传物质在其中"安家落户",进行正常复制和表达,从而获得新物种的一种崭新的育种技术。 这个定义表明,基因工程具有以下几个重要特征:首先,外源核酸分子在不同的寄主生物中进行繁殖,能够跨越天然物种屏障,把来自任何一种生物的基因放置到新的生物中,而这种生物可以与原来生物毫无亲缘关系,这种能力是基因工程的第一个重要特征。第二个特征是,一种确定的DNA小片段在新的寄主细胞中进行扩增,这样实现很少量DNA样品"拷贝"出大量的DNA,而且是大量没有污染任何其它DNA序列的、绝对纯净的DNA分子群体。科学家将改变人类生殖细胞DNA的技术称为“基因系治疗”(germlinetherapy),通常所说的“基因工程”则是针对改变动植物生殖细胞的。无论称谓如何,改变个体生殖细胞的DNA都将可能使其后代发生同样的改变。
迄今为止,基因工程还没有用于人体,但已在从细菌到家畜的几乎所有非人生命物体上做了实验,并取得了成功。事实上,所有用于治疗糖尿病的胰岛素都来自一种细菌,其DNA中被插入人类可产生胰岛素的基因,细菌便可自行复制胰岛素。基因工程技术使得许多植物具有了抗病虫害和抗除草剂的能力;在美国,大约有一半的大豆和四分之一的玉米都是转基因的。目前,是否该在农业中采用转基因动植物已成为人们争论的焦点:支持者认为,转基因的农产品更容易生长,也含有更多的营养(甚至药物),有助于减缓世界范围内的饥荒和疾病;而反对者则认为,在农产品中引入新的基因会产生副作用,尤其是会破坏环境。
诚然,仍有许多基因的功能及其协同工作的方式不为人类所知,但想到利用基因工程可使番茄具有抗癌作用、使鲑鱼长得比自然界中的大几倍、使宠物不再会引起过敏,许多人便希望也可以对人类基因做类似的修改。毕竟,胚胎遗传病筛查、基因修复和基因工程等技术不仅可用于治疗疾病,也为改变诸如眼睛的颜色、智力等其他人类特性提供了可能。目前我们还远不能设计定做我们的后代,但已有借助胚胎遗传病筛查技术培育人们需求的身体特性的例子。比如,运用此技术,可使患儿的父母生一个和患儿骨髓匹配的孩子,然后再通过骨髓移植来治愈患儿。
随着DNA的内部结构和遗传机制的秘密一点一点呈现在人们眼前,特别是当人们了解到遗传密码是由 RNA转录表达的以后,生物学家不再仅仅满足于探索、提示生物遗传的秘密,而是开始跃跃欲试,设想在分子的水平上去干预生物的遗传特性。 如果将一种生物的 DNA中的某个遗传密码片断连接到另外一种生物的DNA链上去,将DNA重新组织一下,就可以按照人类的愿望,设计出新的遗传物质并创造出新的生物类型,这与过去培育生物繁殖后代的传统做法完全不同。 这种做法就像技术科学的工程设计,按照人类的需要把这种生物的这个“基因”与那种生物的那个“基因”重新“施工”,“组装”成新的基因组合,创造出新的生物。这种完全按照人的意愿,由重新组装基因到新生物产生的生物科学技术,就称为“基因工程”,或者说是“遗传工程”。
【基因工程的基本操作步骤】
1.获取目的基因是实施基因工程的第一步。
2.基因表达载体的构建是实施基因工程的第二步,也是基因工程的核心。
3.将目的基因导入受体细胞是实施基因工程的第三步。
4.目的基因导入受体细胞后,是否可以稳定维持和表达其遗传特性,只有通过检测与鉴定才能知道。这是基因工程的第四步工作。
基因工程的前景科学界预言,21世纪是一个基因工程世纪。基因工程是在分子水平对生物遗传作人为干预,要认识它,我们先从生物工程谈起:生物工程又称生物技术,是一门应用现代生命科学原理和信息及化工等技术,利用活细胞或其产生的酶来对廉价原材料进行不同程度的加工,提供大量有用产品的综合性工程技术。
生物工程的基础是现代生命科学、技术科学和信息科学。生物工程的主要产品是为社会提供大量优质发酵产品,例如生化药物、化工原料、能源、生物防治剂以及食品和饮料,还可以为人类提供治理环境、提取金属、临床诊断、基因治疗和改良农作物品种等社会服务。
生物工程主要有基因工程、细胞工程、酶工程、蛋白质工程和微生物工程等5个部分。其中基因工程就是人们对生物基因进行改造,利用生物生产人们想要的特殊产品。随着DNA的内部结构和遗传机制的秘密一点一点呈现在人们眼前,生物学家不再仅仅满足于探索、提示生物遗传的秘密,而是开始跃跃欲试,设想在分子的水平上去干预生物的遗传特性。
美国的吉尔伯特是碱基排列分析法的创始人,他率先支持人类基因组工程 如果将一种生物的DNA中的某个遗传密码片断连接到另外一种生物的DNA链上去,将DNA重新组织一下,不就可以按照人类的愿望,设计出新的遗传物质并创造出新的生物类型吗?这与过去培育生物繁殖后代的传统做法完全不同,它很像技术科学的工程设计,即按照人类的需要把这种生物的这个“基因”与那种生物的那个“基因”重新“施工”,“组装”成新的基因组合,创造出新的生物。这种完全按照人的意愿,由重新组装基因到新生物产生的生物科学技术,就被称为“基因工程”,或者称之为“遗传工程”。
人类基因工程走过的主要历程怎样呢?1866年,奥地利遗传学家孟德尔神父发现生物的遗传基因规律;1868年,瑞士生物学家弗里德里希发现细胞核内存有酸性和蛋白质两个部分。酸性部分就是后来的所谓的DNA;1882年,德国胚胎学家瓦尔特弗莱明在研究蝾螈细胞时发现细胞核内的包含有大量的分裂的线状物体,也就是后来的染色体;1944年,美国科研人员证明DNA是大多数有机体的遗传原料,而不是蛋白质;1953年,美国生化学家华森和英国物理学家克里克宣布他们发现了DNA的双螺旋结果,奠下了基因工程的基础;1980年,第一只经过基因改造的老鼠诞生;1996年,第一只克隆羊诞生;1999年,美国科学家破解了人类第 22组基因排序列图;未来的计划是可以根据基因图有针对性地对有关病症下药。
人类基因组研究是一项生命科学的基础性研究。有科学家把基因组图谱看成是指路图,或化学中的元素周期表;也有科学家把基因组图谱比作字典,但不论是从哪个角度去阐释,破解人类自身基因密码,以促进人类健康、预防疾病、延长寿命,其应用前景都是极其美好的。人类10万个基因的信息以及相应的染色体位置被破译后,破译人类和动植物的基因密码,为攻克疾病和提高农作物产量开拓了广阔的前景。将成为医学和生物制药产业知识和技术创新的源泉。美国的贝克维兹正在观察器皿中的菌落,他曾对人类基因组工程提出警告。
科学研究证明,一些困扰人类健康的主要疾病,例如心脑血管疾病、糖尿病、肝病、癌症等都与基因有关。依据已经破译的基因序列和功能,找出这些基因并针对相应的病变区位进行药物筛选,甚至基于已有的基因知识来设计新药,就能“有的放矢”地修补或替换这些病变的基因,从而根治顽症。基因药物将成为21世纪医药中的耀眼明星。基因研究不仅能够为筛选和研制新药提供基础数据,也为利用基因进行检测、预防和治疗疾病提供了可能。比如,有同样生活习惯和生活环境的人,由于具有不同基因序列,对同一种病的易感性就大不一样。明显的例子有,同为吸烟人群,有人就易患肺癌,有人则不然。医生会根据各人不同的基因序列给予因人而异的指导,使其养成科学合理的生活习惯,最大可能地预防疾病。
目前的基因治疗策略有哪些?还存在哪些尚未解决的问题?
(1)目前基因治疗策略主要有以下几种:
①基因置换
基因置换就是用正常的基因原位替换病变细胞内的致病基因,使细胞内的DNA完全恢复正常状态。这种治疗方法最为理想,但目前由于技术原因尚难达到。
②基因修复
基因修复是指将致病基因的突变碱基序列纠正,而正常部分予以保留。这种基因治疗方式最后也能使致病基因得到完全恢复,操作上要求高,实践中有一定难度。
③基因修饰
又称基因增补,将日的基因导入病变细胞或其它细胞,目的基因的表达产物能修饰缺陷细胞的功能或使原有的某些功能得以加强。在这种治疗方法中,缺陷基因仍然存在于细胞内,目前基因治疗多采用这种方式。如将组织型纤溶酶原激活剂的基因导入血管内皮细胞并得以表达后,防止经皮冠状动脉成形术诱发的血栓形成。
④基因失活
利用反义技术能特异地封闭基因表达特性,抑制- -些有害基因的表达,以达到治疗疾病的目的。如利用反义RNA、核酶或肽核酸等抑制一些癌基因的表达,抑制肿瘤细胞的增殖,诱导肿瘤细胞的分化。用此技术还可封闭肿瘤细胞的耐药基因的表达,增加化疗效果。
⑤免疫调节
将抗体、抗原或细胞因子的基因导入病人体内,改变病人免疫状态,达到预防和治疗疾病的目的。如将白细胞介素-2导入肿瘤病人体内,提高病人IL-2的水平,激活体内免疫系统的抗肿瘤活性,达到防止肿瘤复发的目的。
⑥增加肿瘤细胞对放疗或化疗的敏感性
采用给子前体药物的方法减少化疗药物对正常细胞的损伤。如向肿瘤细胞中导入单纯疱疹病毒胸苷激酶基因,然后给予病人无毒性GCV药物,由于只有含HSV-TK基因的细胞才能将CGV转化成有毒的药物。因而肿瘤细胞被杀死,而对正常细胞无影响。
(2)基因治疗存在以下尚未解决的问题
①缺乏安全、有效、有组织特异性和靶向性的基因转载系统;
②缺乏稳定的表达和转录后的宿主反应:
③一个治疗流程只对一个病人有效,用于其它病人则有可能引起免疫反应;
④费用高;
⑤科学家还不能完全控制基因治疗的方向;
⑥目前还在研究试验阶段,无法完全应用于临床。
简述细胞内癌基因激活的方式有哪些
1.点突变
ras基因家族,均以点突变为主,如膀胱癌细胞中克隆出来的c-Ha-ras基因与正常细胞的相比仅有一个核苷酸的差异。
2.DNA重排
原癌基因在正常情况下表达水平较低,但当发生染色体的易位或倒位时,处于活跃转录基因强启动子的下游,而产生过度表达。如Burkitt淋巴瘤细胞的染色体易位,使c-myc与IG重链基因的调控区为邻,由于免疫球蛋白重链基因表达十分活跃,其启动子为强启动子,且在CH-VH之间还有增强子区,致使c-myc过表达。再如在良性甲状旁腺肿瘤患者的染色体中,cyclinD1基因倒位处于甲状旁腺素基因启动子下游而过渡表达,使细胞出现异常增殖。
染色体易位的主要原因是人类染色体存在着脆性位点,而染色体重排的断裂热点多位于脆性位点。恶性肿瘤的染色体重排是获得性的体细胞变化,而不是发生在生殖细胞内的变化。
3.插入激活
某些不含v-onc的弱转化逆转录病毒,其前病毒DNA插入宿主DNA中,引起插入突变,如逆转录病毒MoSV感染鼠类成纤维细胞后,病毒两端各有一个相同的冗长末端重复序列(LTR),它们不编码蛋白质,而含有启动子、增强子等调控成分,病毒基因组的LTR整合到细胞癌基因c-mos邻近处,使c-mos处于LTR的强启动子和增强子作用之下而被激活,导致成纤维细胞转化为肉瘤细胞,再如鸟类白血病病毒ALV不含v-onc,但插入c-myc的上游,导致基因过度表达。
4.基因扩增
在某些造血系统恶性肿瘤中,癌基因扩增是一个极常见的特征,如前髓细胞性白血病细胞系和这类病人的白血病细胞中,c-myc扩增8~32倍。癌基因扩增的染色体结构有:①双微体(double minute chromosomes,DMs),无着丝粒,成对分布于细胞中的微小染色体(图16-7);②均染区(homogenously stained region,HSR),是染色局部扩增形成的(图16-8);③姊妹染色单体非均等交换(unequal sister chromatid exchange,USCE),G2期由于姊妹染色单体之间发生了非均等交换,结果一个子细胞中该染色体较长,具有同源重复(基因扩增),另一个细胞中对应的染色体较短(基因删除)。其中DMS和HSR是最常见的类型,在具有DMS或HSR的直肠癌患者中c-myc mRNA含量是正常人的30倍。
扼要说明细胞中dna修复系统有哪几种
1、光修复是最早发现的DNA修复方式。细菌中的DNA光解酶酶能特异性识别紫外线造成的核酸链上相邻嘧啶共价结合的二聚体,并与其结合后受光照射,则此酶就被激活,将二聚体分解为两个正常的嘧啶单体,然后酶从DNA链上释放,DNA恢复正常结构。2、切除修复 细胞内有多种特异的核酸内切酶,可识别DNA的损伤部位,在其附近将DNA单链切开,再由外切酶将损伤链切除,由聚合酶以完整链为模板进行修复合成,最后有连接酶封口。3、 碱基的直接插入 DNA链上嘌呤的脱落造成无嘌呤位点,能被DNA嘌呤插入酶识别结合,在K+存在的条件下,催化游离嘌呤或脱氧嘌呤核苷插入生成糖苷键,且催化插入的碱基有高度专一性、与另一条链上的碱基严格配对,使DNA完全恢复。 4、烷基的转移 在细胞中发现有一种O6甲基鸟嘌呤甲基转移酶,能直接将甲基从DNA链鸟嘌呤O6位上的甲基移到蛋白质的半胱氨酸残基上而修复损伤的DNA。5、重组修复 此过程也叫复制后修复。重组修复中原损伤没有除去,但若干代后可逐渐稀释,消除其影响。所需要的酶包括与重组及修复合成有关的酶,如重组蛋白A、B、C及DNA聚合酶、连接酶等。 6、诱导修复 DNA严重损伤能引起一系列复杂的诱导效应,称为应急反应,包括修复效应、诱变效应、分裂抑制及溶原菌释放噬菌体等。细胞癌变也可能与应急反应有关。应急反应诱导切除和重组修复酶系,还诱导产生缺乏校对功能的DNA聚合酶,加快修复,避免死亡,但提高了变异率。
DNA损伤的修复方式有哪些?
1、光修复:指细胞在酶的作用下,直接将损伤的DNA进行修复。修复是由细菌中的DNA光解酶完成,此酶能特异性识别紫外线造成的核酸链上相邻嘧啶共价结合的二聚体,并与其结合,这步反应不需要光;结合后如受300-600nm波长的光照射,则此酶就被激活,将二聚体分解为两个正常的嘧啶单体,然后酶从DNA链上释放,DNA恢复正常结构。2、切除修复:(1)细胞内有多种特异的核酸内切酶,可识别DNA的损伤部位,在其附近将DNA单链切开,再由外切酶将损伤链切除,由聚合酶以完整链为模板进行修复合成,最后有连接酶封口;(2)碱基脱氨形成的尿嘧啶、黄嘌呤和次黄嘌呤可被专一的N-糖苷酶切除,然后用AP核酸内切酶打开磷酸二酯键,进行切除修复。DNA合成时消耗NADPH合成胸腺嘧啶,可与胞嘧啶脱氨形成的尿嘧啶相区别,提高复制的忠实性。RNA是不修复的,所以采用“廉价”的尿嘧啶;(3)切除修复不需光照,也称暗修复。大肠杆菌中有UvrABC系统,可切除修复嘧啶二聚体。人体缺乏相应系统则发生“着色性干皮病”,皮肤干燥,有色素沉着,易患皮肤癌。可加入T4内切酶治疗。3、诱导修复:DNA严重损伤能引起一系列复杂的诱导效应,称为应急反应,包括修复效应、诱变效应、分裂抑制及溶原菌释放噬菌体等。细胞癌变也可能与应急反应有关。应急反应诱导切除和重组修复酶系,还诱导产生缺乏校对功能的DNA聚合酶,加快修复,避免死亡,但提高了变异率。单链DNA诱导重组蛋白A,可水解LexA蛋白,使一系列基因得到表达,如RecA、UvrABC、SOS修复所需的酶等,产生应急反应。应急反应可作为致癌物的简易检测方法。采用缺乏修复系统、膜透性高的E.coli突变株,并添加鼠肝匀浆液。扩展资料:DNA损伤的原因:DNA存储着生物体赖以生存和繁衍的遗传信息,因此维护DNA分子的完整性对细胞至关紧要。外界环境和生物体内部的因素都经常会导致DNA分子的损伤或改变,而且与RNA及蛋白质可以在细胞内大量合成不同,一般在一个原核细胞中只有一份DNA,在真核二倍体细胞中相同的DNA也只有一对,如果DNA的损伤或遗传信息的改变不能更正,对体细胞就可能影响其功能或生存,对生殖细胞则可能影响到后代。 参考资料来源:百度百科-DNA修复